
Reference Guide

GeoCoder Object
Reference Guide

ii

Copyright
Companies, names, and data used in examples herein are fictitious unless otherwise noted. No
part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, for any purpose, without the express written permission of Melissa Data
Corporation. This document and the software it describes are furnished under a license
agreement, and may be used or copied only in accordance with the terms of the license
agreement.

© 2013. Melissa Data Corporation. All rights reserved.

Information in this document is subject to change without notice. Melissa Data Corporation
assumes no responsibility or liability for any errors, omissions, or inaccuracies that may appear in
this document.

Trademarks
GeoCoder Object is a trademark of Melissa Data Corporation. Windows is a registered trademark
of Microsoft Corp.

The following are registrations and trademarks of the United States Postal Service®: United
States Postal Service, ZIP, ZIP Code, and ZIP + 4.

MELISSA DATA CORPORATION
22382 Avenida Empresa
Rancho Santa Margarita, CA 92688-2112

Phone: 1-800-MELISSA (1-800-635-4772)
Fax: 949-589-5211

E-mail: info@MelissaData.com
Web site: www.MelissaData.com

For the latest version of this Reference Guide, visit
http://www.MelissaData.com/tech/geocoder.htm.

Document Code: GCORFG
Revision Number: 131014.242
Last Update: October 14, 2013

iii

Dear Programmer,

I would like to take this opportunity to thank you for your interest in Melissa
Data products and introduce you to the company.

Melissa Data has been a leading provider of data quality and address
management solutions since 1985. Our data quality software, Cloud services,
and data integration components verify, standardize, consolidate, enhance
and update U.S., Canadian, and global contact data, including addresses,
phone numbers, and email addresses, for improved communications and
ROI. More than 5,000 companies rely on Melissa Data to gain and maintain a
single, accurate and trusted view of critical information assets

This manual will guide you through the functions of our easy-to-use
programming tools. Your feedback is important to me, so please don't
hesitate to email your comments or suggestions to me at:
Ray@MelissaData.com.

I look forward to hearing from you.

Best Wishes,

Raymond F. Melissa
President

iv

Table of Contents

Chapter 1: Introduction to GeoCoder Object 1
Entering Your GeoCoder Object License ... 3
Using GeoCoder Object.. 4

Chapter 2: GeoCoder Object Functions... 7
GeoCoder Function List.. 7

Initialize GeoCoder Object .. 9
Geocoding ZIP Codes and Addresses ... 18
Retrieve Results... 24
Retrieve Geocode Data.. 29

1

Chapter 1
Introduction to GeoCoder

Object

GeoCoder Object retrieves the following information for a submitted 5-digit ZIP Code™
or 9-digit ZIP + 4®:

• County name

• County FIPS code

• Census Block

• Census Tract

• Core Based Statistical Area (CBSA) information

• Time zone

• Latitude and longitude of the ZIP centroid

With a 6-digit Canadian Postal Code, GeoCoder Object will return:

• Time zone

• Latitude and longitude of the Postal Code centroid

C h a p t e r 1 G e o C o d e r O b j e c t
I n t r o d u c t i o n t o G e o C o d e r O b j e c t R e f e r e n c e G u i d e

2

For example, if you submitted the ZIP + 4 of “92688-2112,” the GeoCoder Object
would return:

GeoCoder Object is compatible with many of the most popular programming
languages, including Access, Active Server Pages, C, C++, Delphi, FoxPro, Power
Builder, and Visual Basic. For sample source code that you can utilize in your own
applications, visit our website at www.MelissaData.com.

Geodetic System
The GeoCoder Object uses WGS 84 standard, an Earth-centered, Earth-fixed
terrestrial reference system and geodetic datum.

GeoPoint Coding
Using multisource data, Melissa Data GeoPoint allows you to return latitude and
longitude down to the rooftop of over 95% of all physical address in the United States.
Within GeoPoint, there are two levels of accuracy: Rooftop and Interpolated Rooftop.

• Rooftop — These are the most accurate latitude and longitude available with
coverage of approximately 105 million individual addresses.

• Interpolated Rooftop — These coordinates were computed using mathe-
matical algorithms and street shape maps. While these coordinates are edu-
cated estimates, they should be quite accurate for the majority of the United
States. There may be cases where the location of interpolated points is not
very near the actual residence, mostly in rural areas with long streets and
non-standard house numbering. However, these coordinates are still much
more accurate than ZIP + 4 coordinates.

The basic version of GeoCoder Object lacks this GeoPoint feature. It is still accurate to
the ZIP + 4 level.

Function Value

GetCensusBlock 4021

GetCensusTract 03206

GetCountyFIPS 06059

GetCountyName Orange

GetLatitude 33.638915

GetLongitude -117.603858

http://www.MelissaData.com
http://www.MelissaData.com
http://www.MelissaData.com

3

G e o C o d e r O b j e c t C h a p t e r 1
R e f e r e n c e G u i d e I n t r o d u c t i o n t o G e o C o d e r O b j e c t

1.1: Entering Your GeoCoder Object License
The license string is a software key that unlocks the functionality of the component.
Without this key, the object does not function. You set the license string using an
environment variable called MD_LICENSE. If you are just trying out GeoCoder Object
and have a demo license, you can use the environment variable
MD_LICENSE_DEMO for this purpose. This avoids conficts or confusion if you already
have active subscriptions to other Melissa Data object products.

In earlier versions of GeoCoder Object, you would set this value with a call to the
SetLicenseString function. Using an environment variable makes it much easier to
update the license string without having to edit and re-compile the application.

It used to be necessary, even when employing an environment variable, to call the
SetLicenseString function without passing the license string value. This is longer true.
GeoCoder Object will still recognize the SetLicenseString function, but you should
eventually remove any reference to it from your code.

Windows
Windows users can set environment variables by doing the following:

1 Select Start > Settings, and then click Control Panel.

2 Double-click System, and then click the Advanced tab.

3 Click Environment Variables, and then select either System Variables or
Variables for the user X.

4 Click New.

5 Enter “MD_LICENSE” in the Variable Name box.

6 Enter the license string in the Variable Value box, and then click OK.

Please remember that these settings take effect only upon start of the program. It may
be necessary to quit and restart the application to incorporate the changes.

Linux/Solaris/HP-UX/AIX
Unix-based OS users can simply set the license string via the following (use the actual
license string, instead):

export MD_LICENSE=A1B2C3D4E5

If this setting is placed in the .profile, remember to restart the shell.

GeoCoder Object also used to employ its own environment variable,
MDGEO_LICENSE. The MD_LICENSE variable is shared across the entire Melissa
Data product line of programming tools. GeoCoder Object will still use the old license
variable for the time being, but you should transition to using MD_LICENSE as soon
as possible.

C h a p t e r 1 G e o C o d e r O b j e c t
I n t r o d u c t i o n t o G e o C o d e r O b j e c t R e f e r e n c e G u i d e

4

1.2: Using GeoCoder Object
1 Create an instance of GeoCoder Object.

Create GeoCoder as New Instance of mdGeo

2 Set the path to the data files.

CALL SetPathToGeoCodeDataFiles WITH DataPath

3 Call the InitializeDataFiles function to connect the GeoCoder Object to its
supporting data file.

CALL InitializeDataFiles RETURNING Result

IF Result <> 0 Then

CALL GetInitializeErrorString RETURNING ErrorString

 PRINT "Error: " & ErrorString

ENDIF

4 To geocode a ZIP Code, call the ComputeDistance function, passing the ZIP
Code to be coded as a parameter. If this function returns a false or zero value,
check the GetResults function for the cause of the failure.

CALL ComputeDistance WITH Zip5, Plus4

CALL GetResults RETURNING ResultCode

IF ResultCode CONTAINS "GS01", "GS02", "GS03", "GS05", OR

"GS06" THEN

CALL GetCountyName RETURNING CountyName

CALL GetCountyFips RETURNING CountyFIPSCode

CALL GetCensusBlock RETURNING CensusBlock

CALL GetCensusTract RETURNING CensusTract

CALL GetLatitude RETURNING Latitude

CALL GetLongitude RETURNING Longitude

CALL GetPlaceCode RETURNING PlaceCode

CALL GetPlaceName RETURNING PlaceName

CALL GetCBSACode RETURNING CBSACode

CALL GetCBSALevel RETURNING CBSALevel

CALL GetCBSATitle RETURNING CBSATitle

CALL GetCBSADivisionCode RETURNING CBSADivisionCode

CALL GetCBSADivisionLevel RETURNING CBSADivisionLevel

CALL GetCBSADivisionTitle RETURNING CBSADivisionTitle

CALL GetTimeZone RETURNING TimeZone

CALL GetTimeZoneCode RETURNING TimeZoneCode

ELSE

PRINT ResultCode

ENDIF

5

G e o C o d e r O b j e c t C h a p t e r 1
R e f e r e n c e G u i d e I n t r o d u c t i o n t o G e o C o d e r O b j e c t

GeoPoint Sample
The procedure for returning the optional doorstop-level GeoPoint data is almost
identical to the GeoCode procedure, assuming you have purchased a GeoPoint
license, with the following exceptions.

1 You must also set the path to the GeoPoint data files before calling the
GetInitializeErrorString function.

CALL SetPathToGeoCodeDataFiles WITH GeoCodeDataPath

CALL SetPathToGeoPointDataFiles WITH GeoPointDataPath

2 Call the GeoPoint function instead of the ComputeDistance function. This
function has one extra parameter, which is the Delivery Point Code for a specific
address.

CALL GeoPoint WITH Zip5, Plus4, DPC RETURNING Result

CALL GetResults RETURNING ResultCode

IF ResultCode CONTAINS "GS01", "GS02", "GS03", "GS05", OR

"GS06" THEN

Process Return Data Identically to Geocode

ELSE

PRINT ResultCode

ENDIF

Recent Changes to GeoCoder Object
July 20, 2011

Canadian GeoCoding was added.

October 28, 2010
The GeoPoint option has been upgraded to include interpolated locations. See page 2
in this chapter for more information about interpolation.

December 11, 2009
The GetStatus Code and GetErrorCode functions are being deprecated in favor of the
GetResults function. This function returns a comma delimited string of codes that
combine the information in the two deprecated functions. See Section 2.1.3, Retrieve
Results, on page 24 for more information.

C h a p t e r 1 G e o C o d e r O b j e c t
I n t r o d u c t i o n t o G e o C o d e r O b j e c t R e f e r e n c e G u i d e

6

7

Chapter 2
GeoCoder Object

Functions

2.1: GeoCoder Function List

2.1.1: Initialize GeoCoder Object
These functions initialize GeoCoder Object and connect it to its data files.

SetPathToGeoCodeDataFiles .. 9
SetPathToGeoPointDataFiles .. 10
SetPathToGeoCanadaDataFiles ...11
SetLicenseString ...11
InitializeDataFiles ... 12
Initialize (Deprecated) .. 13
GetInitializeErrorString ... 15
GetBuildNumber .. 15
GetDatabaseDate .. 16
GetExpirationDate.. 16
GetLicenseExpirationDate ... 17

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

8

2.1.2: Geocoding ZIP Codes and Addresses
These function retrieve the geographic data for a given ZIP Code (ComputeDistance
function) or address (GeoPoint function).

ComputeBearing .. 18
ComputeDistance ... 19
GeoCode .. 20
GeoPoint .. 21

2.1.3: Retrieve Results
The following functions return information on the success of the last call to either to the
ComputeDistance or GeoPoint function. GetStatusCode and GetErrorCode are
considered deprecated.

GetResults.. 24
GetResultCodeDescription ... 25
GetStatusCode (Deprecated) ... 26
GetErrorCode (Deprecated) ... 27

2.1.4: Retrieve Geocode Data
The following functions return the geo information from the last call to either the
ComputeDistance or GeoPoint function.

GetCBSACode ... 29
GetCBSALevel ... 30
GetCBSATitle ... 30
GetCBSADivisionCode... 31
GetCBSADivisionLevel... 31
GetCBSADivisionTitle... 32
GetCensusBlock... 32
GetCensusTract.. 33
GetCountyFips.. 34
GetCountyName... 35
GetLatitude ... 35
GetLongitude .. 36
GetPlaceCode .. 37
GetPlaceName ... 37
GetTimeZone.. 38
GetTimeZoneCode ... 39

9

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

2.1.1: Initialize GeoCoder Object
These functions initialize GeoCoder Object and connect it to its data files.

SetPathToGeoCodeDataFiles
This function passes a string value containing the path to the data files used by
GeoCoder Object.

Remarks
This function must be called prior to calling the InitializeDataFiles function. The value
must contain a valid path to the directory that contains the GeoCode data files,
mdGeo.dat and mdGeo.lic.

Syntax
object->SetPathToGeoCodeDataFiles(StringValue);

C
mdEmailSetPathToGeoCodeDataFiles(object, *char);

COM
object.PathToGeoCodeDataFiles = StringValue

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

10

SetPathToGeoPointDataFiles
This function passes a string value containing the path to the data files used by the
GeoPoint function of GeoCoder Object.

Remarks
This function must be called prior to calling the InitializeDataFiles function. It is
optional if you do not intend to use the GeoPoint function.

The value must contain a valid path to the directory that contains the GeoPoint data
files, mdGeoPoint.idx and mdGeoPoint.dat.

Syntax
object->SetPathToGeoPointDataFiles(StringValue);

C
mdEmailSetPathToGeoPointDataFiles(object, *char);

COM
object.PathToGeoPointDataFiles = StringValue

11

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

SetPathToGeoCanadaDataFiles
This function passes a string value containing the path to the data files used by the
ComputeDistance and GeoPoint function to geocode Canadian postal codes.

Remarks
This function must be called prior to calling the InitializeDataFiles function. It is
optional if you do not intend to geocode Canadian addresses.

The value must contain a valid path to the directory that contains the Canadian
geocoing data file: mdGeoCanada.db.

SetLicenseString
The License String is a software key from Melissa Data that unlocks the full
functionality of the component.

Remarks
The license string is used to unlock a component’s full functionality. The license string
is included with the documentation you received.

If you have not purchased a license, call Melissa Data toll free at 1-800-MELISSA (1-
800-635-4772) or send an email to sales@MelissaData.com.

The license string is normally set using an environment variable, either MD_LICENSE
or MD_LICENSE_DEMO. Calling SetLicenseString is an alternative method for
setting the license string, but applications developed for a production environment
should only use the environment variable.

When using an environment variable, it is not necessary to call the SetLicenseString
function.

For more information on setting the environment variable, see page 3 of this guide.

Syntax
object->SetPathToGeoCanadaDataFiles(StringValue);

C
mdEmailSetPathToGeoCanadaDataFiles(object, *char);

COM
object.PathToGeoCanadaDataFiles = StringValue

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

12

If the license string is not set, the component will operate in a demonstration mode
(limited to Nevada ZIP Codes) and will return the string “DEMO” after the
GetBuildNumber function.

Input Parameters
The SetLicenseString function has one parameter.

If the license string is already set as an environment variable, only an the input
parameter is passed as an empty string.

Return Value
The SetLicenseString function returns a Boolean value of 0 (FALSE) or 1 (TRUE). It
will return a FALSE Boolean value if the license string provided is incorrect.

InitializeDataFiles
The InitializeDataFiles function opens the required data files and prepares the
GeoCoder Object for use.

Remarks
The SetPathToGeoCodeDataFiles function must be called prior to calling this
function. If you wish to use the optional GeoPoint function for greater accuracy, the
SetPathToGeoPointDataFiles function must also be called.

If this function returns any value other than No Error, call the GetInitializeErrorString
function to determine the cause of the failure.

The GeoCoder Object data expires nine months after the date indicated by the
GetDatabaseDate function. After this date, a “DataFile Expired” error is returned.

LicenseString A string value representing the license.

Syntax
COM
BooleanValue = object.SetLicenseString(LicenseString)

C++
BooleanValue = object->SetLicenseString(LicenseString);

C
IntegerValue = mdGeoSetLicenseString(object, LicenseString);

13

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

Return Value
The InitializeDataFiles function returns an integer value of 0 if successful, and a non-
zero value if unsuccessful.

Initialize (Deprecated)
This function has been deprecated in favor of the InitializeDataFiles function. It
may still be called instead of the InitializeDataFiles function if the GeoPoint
functionality is not being used, but calling the InitializeDataFiles function is now the
preferred method and required for using the GeoPoint function.

This function opens the required data files and prepares the GeoCoder Object for use.

Remarks
if this function returns any value other than 0, call the GetInitializeErrorString
function to determine the cause of the failure.

GeoCoder data expires nine months after the GeoCoder Object database date. After
this date, a “DataFile Expired” error is returned.

Return
Value Initialize Error String

Return
Value Initialize Error String

0 No error. 2 Insufficient memory to initialize.

-1 Not initialized. 3 County file error.

1 Invalid path to data. 4 Data File Expired.

Syntax
IntegerValue = object->InitializeDataFiles();

C
IntegerValue = mdGeoInitializeDataFiles(object);

COM
IntegerValue = object.InitializeDataFiles()

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

14

Input Parameters
The Initialize function has the following optional parameters:

Return Value
The Initialize function returns the same values as the InitializeDataFiles function,
show in the table on page 13.

DataPath A string containing the path to the mdGeo.dat and mdGeo.lic file
locations.
The path parameter is optional. If the path is not given, the Initialize
function will look for this data file in the same directory as the
GeoObj.dll file (for Windows) or the target directory (for Unix).

IndexPath A string containing the path to the mdGeo.idx and mdGeo.cty file
locations.
The path parameter is optional. If the path is not given, the Initialize
function will look for this data file in the same directory as the
GeoObj.dll file (for Windows) or the target directory (for Unix).

Syntax
IntegerValue = object->Initialize(DataPath, IndexPath);

C
IntegerValue = mdGeoInitialize(object, DataPath, IndexPath);

COM
IntegerValue = object.Initialize(DataPath, IndexPath)

15

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

GetInitializeErrorString
This function returns a descriptive string to describe any error in a call to the
InitializeDataFiles function.

Remarks
If called before the InitializeDataFiles function, this function will return an empty
string.

GetBuildNumber
The GetBuildNumber function returns the current development release build number
of GeoCoder Object.

Remarks
The word “DEMO” will be returned after the build number if no license string is
provided, or if an incorrect license string is entered.

Syntax
StringValue = object->GetInitializeErrorString();

C
StringValue = mdGeoGetInitializeErrorString(object)

COM
StringValue = object.GetInitializeErrorString

Syntax
StringValue = object->GetBuildNumber();

C
StringValue = mdGeoGetBuildNumber(object);

COM
StringValue = object.GetBuildNumber()

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

16

GetDatabaseDate
The GetDatabaseDate function returns a date value representing the date of the
GeoCoder Object database. GeoCoder data expires nine months after the GeoCoder
Object database date.

Remarks
If the GetDatabaseDate function is called before the InitializeDataFiles function is
called and the data files are not in the installation directory, the object will return a
value of “12/30/1899”.

Return Value
The GetDatabaseDate function returns a value representing the date of the GeoCoder
Object database. The COM object returns a date value, while the standard object
returns a string value.

GetExpirationDate
The GetExpirationDate function returns a date value representing the date your data
files expire. This date allows you to confirm that the data files you are using are the
latest ones.

Remarks
If the GetExpirationDate function is called before the InitializeDataFiles function is
called, an exception will be reported.

Syntax
StringValue = object->GetDatabaseDate();

C
StringValue = mdGeoGetDatabaseDate(object);

COM
DateTime = object.GetDatabaseDate()

17

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

Return Value
The GetExpirationDate function returns a value representing the expiration date of
the data files. The COM object returns a date value, while the standard object returns a
string value.

GetLicenseExpirationDate
Returns a string value containing the expiration date of the current license string.

Remarks
Call this function to determine when your current license will expire. After this date,
GeoCoder Object will no longer function.

Syntax
StringValue = object->GetExpirationDate();

C
StringValue = mdGeoGetExpirationDate(object);

COM
DateTime = object.GetExpirationDate()

Syntax
StringValue = object->GetLicenseExpirationDate()

C
StringValue = mdGeoGetLicenseExpirationDate(object)

COM
StringValue = object.GetLicenseExpirationDate

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

18

2.1.2: Geocoding ZIP Codes and Addresses
These function retrieve the geographic data for a given ZIP Code (ComputeDistance
function) or address (GeoPoint function).

ComputeBearing
The ComputeBearing Method returns a bearing of 0 to 360 degrees representing the
compass direction from point 1 to point 2. To convert your bearing to an approximate
compass direction, use the following table:

Remarks
If an invalid latitude or longitude is entered, a value of 999 will be returned.

You do not have to call the Initialize (Deprecated) function before calling the
ComputeBearing function.

Input Parameters
The method accepts four double-precision floating point numbers.

• lat1 - latitude for point 1 [In Degrees (90 to -90)]

• long1 - longitude for point 1 [In Degrees (180 to -180)]

• lat2 - latitude for point 2 [In Degrees (90 to -90)]

• long2 - longitude for point 2 [In Degrees (180 to -180)]

Direction Degrees Direction Degrees

N 0 to 22.5, 337.5 to 0 S 157.5 to 202.5

NE 22.5 to 67.5 SW 202.5 to 247.5

E 67.5 to 112.5 W 247.5 to 292.5

SE 112.5 to 157.5 NW 292.5 to 337.5

19

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

Return Value
The ComputeBearing Method returns a double-precision bearing based on input
latitudes & longitudes.

ComputeDistance
The ComputeDistance Method returns a distance in miles between point 1 and point 2.

Remarks
If an invalid latitude or longitude is entered, a value of 999 will be returned.

You do not have to call the Initialize (Deprecated) function before calling the
ComputeDistance function.

Input Parameters
The method accepts four double-precision floating point numbers.

• lat1 - latitude for point 1 [In Degrees (90 to -90)]

• long1 - longitude for point 1 [In Degrees (180 to -180)]

• lat2 - latitude for point 2 [In Degrees (90 to -90)]

• long2 - longitude for point 2 [In Degrees (180 to -180)]

Syntax
Double Float = object->ComputeBearing (lat1, long1, lat2,

long2);

C
Double Float = mdGeoComputeBearing (object, lat1, long1, lat2,

long2);

COM
Double = object.ComputeBearing (lat1, long1, lat2, long2)

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

20

Return Value
The ComputeDistance Method returns the distance in miles between two points based
on the input latitudes & longitudes.

GeoCode
This function obtains and sets the return values of the GeoCoder Object with
Geographic and Census data, using an input ZIP Code and Plus4.

Remarks
If a 9-digit ZIP Code or 5-digit ZIP Code and Plus4 are used as parameters for the
GeoCode function, the following will be done in order, if the previous fails:

1 Information will be obtained from the full ZIP and Plus4 combination. The
GetResults function will return “GS01.”

2 If no information is found for the Plus4, the centroid for the ZIP+2 segment will be
used (The ZIP Code & first two digits of the Plus4). The GetResults function will
return “GS02.”

3 If the ZIP+2 segment cannot be found, the centroid for the 5-digit ZIP Code will be
used. The GetResults function will return “GS03.”

Syntax
Double Float = object->ComputeDistance (lat1, long1, lat2,

long2);

C
Double Float = mdGeoComputeDistance (object, lat1, long1, lat2,

long2);

COM
Double = object.ComputeDistance (lat1, long1, lat2, long2)

21

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

Input Parameters
The GeoCode function has the following parameters:

When geocoding Canadian postal codes the full six-digit postal code must be included
in the first parameter (Zip),

Return Value
The GeoCode function returns a Boolean value of 0 (FALSE) or 1 (TRUE).

A TRUE return will set the return values of the various functions described in the
section beginning on page 29. On a FALSE return, check the GetResults function.

GeoPoint
Obtains and sets the return values of the GeoCoder Object with Geographic and
Census data, using an input ZIP Code, Plus4 and delivery point code. If successful,
the data will be accurate to the rooftop level, rather than just the ZIP + 4 code, as with
the ComputeDistance function.

Remarks
If a five-digit ZIP Code, Plus4 and valid delivery point are used as parameters for the
GeoPoint function, the following will be done in order, if the previous fails:

1 Rooftop-level information will be obtained for the full combination of ZIP Code,
Plus4 and Delivery Point Code (Result Code “GS05”).

Zip (Required) The 5-digit ZIP Code, 9-digit ZIP + 4 code, or 6-digit Canadian
Postal Code. A ZIP Code can consist of five digits to represent a
5-digit ZIP Code, or nine digits to represent a ZIP + 4 code. If the
ZIP + 4ZIP + 4 is included here, a hyphen can be used to
separate the two numbers, but is not required.

Plus4 (Optional) The 4-digit Plus4 code if not included with the ZIP parameter.

Syntax
Boolean = object->GeoCode("92688", "2112");

C
Integer = mdGeoGeoCode(object, "92688", "2112");

COM
Boolean = object.GeoCode("92688", "2112")

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

22

2 If the Delivery Point Code is not found, information will be returned for the centroid
of the ZIP and Plus4 combination (Result Code “GS01”).

3 If no information is found for the Plus4, the centroid for the ZIP+2 (The ZIP Code &
first two digits of the Plus4) segment will be used (Result Code “GS02”).

4 If the ZIP+2 segment cannot be found, the centroid for the 5-digit ZIP Code will be
used (Result Code “GS03”)

5 Check the return value of the GetResults function to verify the level to which the
record was coded.

Input Parameters
The GeoPoint function can use one of the two following sets of string values as
parameters:

Or:

The AddressKey parameter is the preferred input. However either the AddressKey or
the combination of Zip, Plus4, and DeliveryPoint Code are valid. For Canadian
records, the Plus4 and DeliveryPoint Code parameters must be blank.

Refer to the syntax below for an example usage of both inputs.

Return Value
The GeoPoint function returns a Boolean value of 0 (FALSE) or 1 (TRUE).

AddressKey This is the preferred input. The 11-digit AddressKey contains
all the information that the object requires. If the AddressKey
input is used, do not use the other input parameters.

Zip The 5-digit ZIP Code, 9-digit ZIP + 4 code, or 6-digit
Canadian Postal Code. A ZIP Code can consist of five digits
to represent a 5-digit ZIP Code, or nine digits to represent a
ZIP + 4 code. If the ZIP + 4 is included here, a hyphen can be
used to separate the two numbers, but is not required.

Plus4 The four-digit Plus4 code.

DeliveryPoint Code The two-digit Delivery Point Code.

23

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

A TRUE return will set the return values of the functions described in the section
beginning on page 29. On a FALSE return, check the GetResults function.

Syntax
Boolean = object->GeoPoint(AddressKey, "", "");

Boolean = object->GeoPoint(ZipCode, Plus4, DPC);

C
Integer = mdGeoGeoPoint(object, AddressKey, "", "");

Integer = mdGeoGeoPoint(object, ZipCode, Plus4, DPC);

COM
Boolean = object.GeoPoint(AddressKey, "", "")

Boolean = object.GeoPoint(ZipCode, Plus4, DPC)

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

24

2.1.3: Retrieve Results
The following functions return information on the success of the last call to either to the
ComputeDistance or GeoPoint function. GetStatusCode and GetErrorCode are
considered deprecated.

GetResults
This function returns a string value containing status and error codes for the current
record. Multiple codes are separated by commas.

Remarks
The GetResults function may return one or more four-character strings, separated by
commas, depending on the result generated by the current record.

The possible values are:

Code Short Desc. Long Description

GS01 Geocoded to
Street Level

The record was geocoded to the street (thoroughfare)
level (Zip+4 for US, full postal code for CA).

GS02 Geocoded to
Neighborhood
Level

The record was geocoded to the neighborhood level
(Zip+2 for US).

GS03 Geocoded to
City Level

The record was geocoded to the city (locality) level (ZIP
centroid for US, 3-digit postal code for CA).

GS04 Geocoded to
State Level

The record was geocoded to the state (administrative
area) level.

GS05 Geocoded to
Rooftop Level

The record was geocoded to the rooftop level.

GS06 Geocoded to
Interpolated
Rooftop Level*

The record was geocoded to the rooftop level using
interpolation (educated estimations using street
coordinates).

GE01 Invalid Postal
Code

The submitted postal code is not in a valid format.

GE02 Postal Code
Not Found

The submitted postal code was not found in the
database.

GE03 Demo Mode Geocoder is in Demo mode and a zip code outside the
Demo range was detected.

25

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

If the location information in the current record was valid, this field will contain the
value “GS01” at the very minimum and may include more of the “GS” codes. If the
address could not be verified, the codes beginning with “GE” will indicate the reason or
reasons why verification failed.

GetResultCodeDescription
This function returns the description of the inputted Result Code. It can only be used
through the Standard DLL.

It requires two values to be passed in, a Result Code and an enumerated option. If a string
of Result Codes are inputted, only the first code will be used. The enumerated option will
determine whether a short or long description will be returned.

GE04 Data Files
Expired

Geocoder data files are expired. Please update with the
latest data files.

GE05 License Not
Enabled For
Country

Geocoding for the country of input record is disabled for
your license. Please contact your sales representative to
enable.

* See GeoPoint Coding on page 2 for more information on interpolated roof-
top coding.

Syntax
char = object->GetResults()

C
char = mdGeoGetResults(object)

COM
string = object.Results

Enumerated Value Integer Value Description

ResultCodeDescriptionLong 0 Returns a detailed description of the
inputted result code.

ResultCodeDescriptionShort 1 Returns a brief description of the
inputted result code.

Code Short Desc. Long Description

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

26

GetStatusCode (Deprecated)
The Status Code indicates how precisely the ComputeDistance or GeoPoint
information was matched after a successful call to either of those functions.

This function has been deprecated. You should use the GetResults function
instead. See page 24 for documentation on this function.

Remarks
The GetStatusCode function returns a one-character string value after a call to the
ComputeDistance or GeoPoint function.

Possible return values from the GetStatusCode function are as follows:

Syntax
StringValue = object->GetResultCodeDescription

(StringValue_ResultCode,ResultCdDescOpt);

C
StringValue = mdGeoGetResultCodeDescription

(object,StringValue_ResultCode,int);

Status
Code Explanation

B Record was coded to rooftop level.

A Record was coded to interpolated rooftop level.*

* See GeoPoint Coding on page 2 for more information on interpolated roof-
top coding.

9 Record was coded to the ZIP + 4 centroid (U.S.) or or the full 6-digit
Postal Code level (Canada).

7 Record was coded to the ZIP + 2 centroid.

5 Record was coded to the 5-digit ZIP Code centroid (U.S.) or or the first 3-
digit Postal Code level (Canada).

X Record was not coded.

D This object is in “Demonstration” mode and it detected the input of a ZIP
Code outside the allowable range.

E Expired.

27

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

If neither the ComputeDistance function nor the GeoPoint function have not been
called, this function will return an empty string.

GetErrorCode (Deprecated)
This function returns error code triggered by an unsuccessful call to the
ComputeDistance or GeoPoint function.

This function has been deprecated. You should use the GetResults function
instead. See page 24 for documentation on this function.

Remarks
This function returns s a 1-character string value after an unsuccessful call to the
ComputeDistance or GeoPoint function.

Possible return values from the GetErrorCode function are as follows:

Syntax
StringValue = object->GetStatusCode();

C
StringValue = mdGeoGetStatusCode(object);

COM
StringValue = object.StatusCode

Error
Code Reason for Error

N Record Not Found — Unable to locate the ZIP Code.

Z Bad ZIP Code (an invalid ZIP Code was entered, for example, “abcde”)

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

28

If neither the ComputeDistance nor the GeoPoint function have been called, or if the
function call did not result in an error, the return value of this function will be an empty
string.

Syntax
StringValue = object->GetErrorCode();

C
StringValue = mdGeoGetErrorCode(object);

COM
StringValue = object.ErrorCode

29

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

2.1.4: Retrieve Geocode Data
The following functions return the geo information from the last call to either the
ComputeDistance or GeoPoint function.

GetCBSACode
This function returns the five-digit code for the Core Based Statistical Area (CBSA).

Remarks
Metropolitan and micropolitan statistical areas (metro and micro areas) are geographic
entities defined by the U.S. Office of Management and Budget (OMB) for use by
Federal statistical agencies in collecting, tabulating, and publishing Federal statistics.
The term "Core Based Statistical Area" (CBSA) is a collective term for both metro and
micro areas. A metro area contains a core urban area of 50,000 or more population,
and a micro area contains an urban core of at least 10,000 (but less than 50,000)
population. Each metro or micro area consists of one or more counties and includes
the counties containing the core urban area, as well as any adjacent counties that
have a high degree of social and economic integration (as measured by commuting to
work) with the urban core.

The CBSA Code is a five-digit code for the specific CBSA associated with the location
described by the submitted ZIP Code.

Syntax
StringValue = object->GetCBSACode();

C
StringValue = mdGeoGetCBSACode(object);

COM
StringValue = object.CBSACode

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

30

GetCBSALevel
This function returns the level description for the Core Based Statistical Area (CBSA),
metropolitan or micropolitan.

Remarks
For more information on Core Based Statistical Areas, see the GetCBSACode
function on page 29.

GetCBSATitle
Returns the official U.S. Census Bureau name for the Core Based Statistical Area
(CBSA).

Remarks
For more information on Core Based Statistical Areas, see the GetCBSACode
function on page 29.

Syntax
StringValue = object->GetCBSALevel();

C
StringValue = mdGeoGetCBSALevel(object);

COM
StringValue = object.CBSALevel

Syntax
StringValue = object->GetCBSATitle();

C
StringValue = mdGeoGetCBSATitle(object);

COM
StringValue = object.CBSATitle

31

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

GetCBSADivisionCode
This function returns the numeric code for the division within the Core Based Statistical
Area containing the submitted ZIP Code.

Remarks
Some CBSA’s are broken into parts known as divisions. In this case, the CBSA
Division functions will also be populated. If not, these fields will be empty. Each division
also has a Code, Level and Title.

GetCBSADivisionLevel
This function returns the level description (metropolitan or micropolitan) for the division
within the Core Based Statistical Area containing the submitted ZIP Code.

Remarks
Some CBSA’s are broken into parts known as divisions. In this case, the return values
of the CBSA Division functions will also be populated. If not, these values will be
empty. Each division also has a Code, Level and Title.

Syntax
StringValue = object->GetCBSADivisionCode();

C
StringValue = mdGeoGetCBSADivisionCode(object);

COM
StringValue = object.CBSADivisionCode

Syntax
StringValue = object->GetCBSADivisionLevel();

C
StringValue = mdGeoGetCBSADivisionLevel(object);

COM
StringValue = object.CBSADivisionLevel

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

32

GetCBSADivisionTitle
This function returns the official U.S. Census Bureau’s official name for the division
within the Core Based Statistical Area containing the submitted ZIP Code.

Remarks
Some CBSA’s are broken into parts known as divisions. In this case, the CBSA
Division functions will also be populated. If not, these fields will be empty. Each division
also has a Code, Level and Title.

GetCensusBlock
This function returns the Census Block number for the submitted ZIP + 4, returned
after a successful call to the ComputeDistance or GeoPoint function.

Remarks
Census blocks, the smallest geographic area for which the Bureau of the Census
collects and tabulates decennial census data, are formed by streets, roads, railroads,
streams and other bodies of water, other visible physical and cultural features, and the
legal boundaries shown on Census Bureau maps.

A Census Block Group is a cluster of blocks having the same first digit of their 3-digit
identifying numbers within a Census Tract or Block Numbering Area (BNA). For
example, Census Block Group 3 within a Census Tractor BNA includes all blocks
numbered between 301 and 397. In most cases, the numbering involves substantially
fewer than 97 blocks. Census Block Groups never cross Census Tract or BNA
boundaries, however, they may cross the boundaries of county subdivisions, places,
American Indian and Alaskan Native areas, urbanized areas, voting districts, and
congressional districts. Census Block Groups generally contain between 250 and 550
housing units, with the ideal size being 400 housing units.

Syntax
char = object->GetCBSADivisionTitle();

C
char = mdGeoGetCBSADivisionTitle(object);

COM
string = object.CBSADivisionTitle

33

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

Census Blocks are small areas bordered on all sides by visible features such as
streets, roads, streams, and railroad tracks, and by invisible boundaries such as city,
town, township, county limits, property lines, and short, imaginary extensions of streets
and roads.

The GetCensusBlock function returns a 4-character string value after a call to the
ComputeDistance or GeoPoint function. The first digit is the Block Group and the last
three characters (if any) are the Block Number.

Example:
“103A” (Block Group is 1 & Block Number is 3A)

If neither the ComputeDistance nor the GeoPoint function have been called, or if the
function call resulted in an error, this function value will be empty.

GetCensusTract
This function returns the Census Tract number for the submitted location, returned
after a successful call to the ComputeDistance or GeoPoint function.

Remarks
Census Tracts are small, relatively permanent statistical subdivisions of a county.
Census Tracts are delineated for all metropolitan areas (MA’s) and other densely
populated counties by local census statistical areas committees following Census
Bureau guidelines (more than 3,000 Census Tracts have been established in 221
counties outside MA’s).

The GetCensusTract function returns a four or six-character string value after a
successful call to either the ComputeDistance or the GeoPoint function.

The Census Tract is usually returned as a 4-digit number. However, in areas that
experience substantial growth, a Census Tract may be split to keep the population
level even. When this happens, a 6-digit number will be returned.

Syntax
char = object->GetCensusBlock();

C
char = mdGeoGetCensusBlock(object);

COM
string = object.CensusBlock

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

34

If neither the ComputeDistance nor the GeoPoint function has been called, or if the
function call resulted in an error, this value will be an empty string.

GetCountyFips
This function returns the County FIPS code for the submitted ZIP Code, after a
successful call to either the ComputeDistance or the GeoPoint function.

Remarks
The Federal Information Processing Standard (FIPS) is a 5-digit code defined by the
U.S. Bureau of Census. The first two digits are a state code and the last three indicate
the county within the state.

The GetCountyFips function returns a 5-character string value set by a call to the
ComputeDistance or GeoPoint function. It is accurate to the 9-digit level.

Example:
“06037” is the County FIPS for Los Angeles, CA.

In the example above, “06” is the state code for California and “037” is the county code
for Los Angeles.

If neither the ComputeDistance nor the GeoPoint function has been called, or if the
function call resulted in an error, this value will be an empty string.

Syntax
char = object->GetCensusTract();

C
char = mdGeoGetCensusTract(object);

COM
string = object.CensusTract

Syntax
StringValue = object->GetCountyFips();

C
StringValue = mdGeoGetCountyFips(object);

COM
StringValue = object.CountyFips

35

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

GetCountyName
This function returns the County name for the submitted ZIP Code after a successful
call to either the ComputeDistance or the GeoPoint function.

Remarks
The GetCountyName function returns a 25-character (maximum) string after a
successful call to either the ComputeDistance or the GeoPoint function.

If neither the ComputeDistance nor the GeoPoint function has been called, or if the
function call resulted in an error, this value will be an empty string.

GetLatitude
This function returns the latitude for the submitted location after a successful call to
either the ComputeDistance or the GeoPoint function.

Remarks
Latitude is the geographic coordinate of a point measured in degrees north or south of
the equator. The GeoCoder Object uses the WGS-84 standard for determining
latitude.

The GetLatitude function returns a character string representing a numeric value, set
by a call to either the ComputeDistance or the GeoPoint function.

Since all U.S. ZIP Code latitude coordinates are north of the equator, this value will
always be positive.

Syntax
StringValue = object->GetCountyName();

C
StringValue = mdGeoGetCountyName(object);

COM
StringValue = object.CountyName

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

36

If neither the ComputeDistance nor the GeoPoint function has been called, or if the
function call resulted in an error, this function will return “0.0.”

GetLongitude
This function returns the longitude of the submitted location after a successful call to
either the ComputeDistance or the GeoPoint function.

Remarks
Longitude is the geographic coordinate of a point measured in degrees east or west of
the Greenwich meridian. The GeoCoder Object uses the WGS-84 standard for
determining longitude.

The GetLongitude function returns an 11-character string value set by a call to either
the ComputeDistance or the GeoPoint function. Its negative number indicates a point
west of the Greenwich meridian.

If neither the ComputeDistance nor the GeoPoint function has been called, or if the
function call resulted in an error, this function will return “0.0.”

Syntax
StringValue = object->GetLatitude();

C
StringValue = mdGeoGetLatitude(object);

COM
StringValue = object.Latitude

Syntax
StringValue = object->GetLongitude();

C
StringValue = mdGetGetLongitude(object);

COM
StringValue = object.Longitude

37

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

GetPlaceCode
This function returns the Census Bureau place code associated with the location
passed to either the ComputeDistance or the GeoPoint function.

Remarks
The GetPlaceCode function returns a seven-digit string value containing the Census
place code for the submitted location.

ZIP Code boundaries sometime overlap with city limits and unincorporated areas. The
ZIP Code may place a location within one city even though it is physically located
within a neighboring area. The place code matches the ZIP + 4 code with the Census
bureau’s official name for that physical location.

If neither the ComputeDistance nor the GeoPoint function has been called, the
submitted data was only a five-digit ZIP Code or if the function call resulted in an error,
this function value will return an empty string value.

GetPlaceName
This function returns the Census Bureau place name associated with location passed
to either the ComputeDistance or the GeoPoint function.

Remarks
The GetPlaceName function returns a 60-digit string value containing the Census
place name for the submitted location.

ZIP Code boundaries sometime overlap with city limits and unincorporated areas. The
ZIP Code may place a location within one city even though it is physically located
within a neighboring area. This function returns the Census bureau’s official name for
the ZIP + 4 code.

Syntax
StringValue = object->GetPlaceCode();

C
StringValue = mdGeoGetPlaceCode(object);

COM
StringValue = object.PlaceCode

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

38

For example, the 92688 ZIP Code is located mostly within the city of Rancho Santa
Margarita. However, it also contains parts of the unincorporated area of Los Flores. For
these ZIP + 4 codes, the GetCity function of Address Object would return “Rancho
Santa Margarita,” but this function will return “Los Flores.”

If neither the ComputeDistance nor the GeoPoint function has been called, the
submitted data was only a five-digit ZIP Code or if the function call resulted in an error,
this function will return an empty string value.

GetTimeZone
This function returns the name of the time zone for the submitted location.

Remarks
All Melissa Data products express time zones in UTC (Coordinated Universal Time).

This function will return one of the values under the Name column in the following
table.

Syntax
StringValue = object->GetPlaceName();

C
StringValue = mdGeoGetPlaceName(object);

COM
StringValue = object.PlaceName

Code Name Code Name

0 Military (APO or FPO) 9 Alaska Time

4 Atlantic Time 10 Hawaii Time

5 Eastern Time 11 Samoa Time

6 Central Time 13 Marshall Islands Time

7 Mountain Time 14 Guam Time

8 Pacific Time 15 Palau Time

39

G e o C o d e r O b j e c t C h a p t e r 2
R e f e r e n c e G u i d e

The values under the Code column are returned by the GetTimeZoneCode function.

GetTimeZoneCode
This function returns a numeric code for the time zone for the submitted location.

Remarks
For a list of the possible values returned by this function, see the table on page 38.

Syntax
StringValue = object->GetTimeZone();

C
StringValue = mdGeoGetTimeZone(object);

COM
StringValue = object.TimeZone

Syntax
StringValue = object->GetTimeZoneCode();

C
StringValue = mdGeoGetTimeZoneCode(object);

COM
StringValue = object.TimeZoneCode

C h a p t e r 2 G e o C o d e r O b j e c t
G e o C o d e r O b j e c t F u n c t i o n s R e f e r e n c e G u i d e

40

L icense Agreement

1. NOTICE. MELISSA DATA CORPORATION is WILLING TO LICENSE THE
ENCLOSED SOFTWARE TO YOU, ONLY ON THE CONDITION THAT YOU
ACCEPT ALL OF THE TERMS CONTAINED IN THIS LICENSE
AGREEMENT. PLEASE READ THIS LICENSE AGREEMENT CAREFULLY
BEFORE OPENING THE SEALED DISK PACKAGE. BY OPENING THIS
PACKAGE (OR IN THE CASE OF DOWNLOADED SOFTWARE, YOU
REQUEST UNLOCKING CODE FROM THE PUBLISHER) YOU AGREE TO
BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT
AGREE TO THESE TERMS WE ARE UNWILLING TO LICENSE THE
SOFTWARE TO YOU, AND YOU SHOULD NOT OPEN THE DISK
PACKAGE. IN SUCH CASE, PROMPTLY RETURN THE UNOPENED DISK
PACKAGE AND ALL OTHER MATERIAL IN THIS PACKAGE ALONG WITH
PROOF OF PAYMENT, TO THE AUTHORIZED DEALER FROM WHOM
YOU OBTAINED IT FOR A FULL REFUND OF THE PRICE YOU PAID.

2. Ownership and License. This is a license agreement and NOT an
agreement for sale. We continue to own the copy of the Software (including,
but not limited to, object code, dynamic link libraries, and sample programs,
together with the accompanying documentation contained in this package
and all other copies that you are authorized by this Agreement to make
collectively known as “Software”). Your rights to use the Software are
specified in this Agreement, and we retain all rights not expressly granted to
you in this Agreement. This Software is protected by U.S. copyright laws and

42

international treaties. Nothing in this Agreement constitutes a waiver of our
rights under U.S. Copyright law or any other federal or state law or
international treaty.

3. Permitted Uses. You are granted the following rights to the Software:

(a) Right to Install and Use.

(1) Standalone Computer - Single Installation You may install and use
the Software on the hard disk drive of any single compatible computer
that you own. However, you may not under any circumstances have
the Software installed onto the hard drives of two or more computers
at the same time, (nor may you install the Software onto the hard disk
drive of one computer and then use the original CD-ROM on another
computer). If you wish to use the Software on more than one
computer, you must either erase the Software from the first hard drive
before you install it onto a second hard drive, or else license an
additional copy of the Software for each additional computer on which
you want to use it.

(2) Network Use: If the single computer on which you install the
Software is a network or Internet server, you may use the Software on
any computer attached to the network, provided that it is only installed
on the server. You may install and use this Software on a single file
server regardless of the number of workstations attached to the
network.

(b) Right to Copy. You may copy the Software for backup and archival purposes,
provided that the original and each copy is kept in your possession, and that your
installation and use of the Software does not exceed that allowed in part (a)
above.

(1) Solely with the respect to the manual and Help files, you may
make an unlimited number of copies (either in hard-copy or electronic
form), provided that such copies shall be used only for internal
purposes and are not republished or distributed beyond the licensee’s
premises.

(2) Copy, bundle, or redistribute the DEMO software with any
commercial product (including books, CD-ROM, computer hardware,
or software products). Your promotional and/or packaging materials
must clearly disclose that the Software is copyrighted software of

43

Melissa Data, that no charge is made by Melissa Data or you for it,
and that it is not a fully supported commercial version.

(c) Right to Modify. You may modify the Software and/or merge it into another
computer program to the extent necessary for your own use on (a single computer
or server as specified above); however, any portion of the Software merged into
another computer program will continue to be subject to the terms of this
Agreement. You may use and modify the source code version of those Software
portions that the documentation identifies as sample code (“SAMPLE CODE”),
provided you do not distribute the SAMPLE CODE or any modified version of the
SAMPLE CODE, in source form.

(d) Right to Transfer. You may not rent, lend, or lease this Software. However, you
may transfer this license to use the Software to another party on a permanent
basis by transferring this copy of the License Agreement, at least one unaltered
copy of the Software, and all documentation. You must, at the same time, either
transfer to the other party or destroy all your other copies of the Software or
destroy all of your copies. Such transfer of possession terminates your license
from us. Such other party shall be licensed under the terms of this Agreement
upon its acceptance of this Agreement by its initial use of the Software. If you
transfer the Software, you must remove the Software from your hard disk and you
may not retain any copies of the Software for your own use.

4. Prohibited Uses. You may not, without written permission from us:

(a) Use, copy, modify, merge, or transfer copies of the Software or documentation
except as provided in this Agreement;

(b) Use any backup or archival copies of the Software (or allow someone else to
use such copies) for any purpose other than to replace the original copy in the
event it is destroyed or becomes defective;

(c) Disassemble, decompile or reverse engineer, or in any manner decode the
Software for any reason;

(d) Distribute, Sublicense, lease, or rent the Software, Data files and/or Dynamic
Link Libraries of the Software.

(e) Expose the interfaces of the Software through your application (e.g. an OCX,
DLL, class library, etc.).

5. Limited Warranty. We make the following limited warranties, for a period
of 180 days from the date you acquired the Software from us.

(a) Media. The disks and documentation in this package will be free from defects
in materials and workmanship under normal use. If the disks or documentation fail

44

to conform to this warranty, you may, as your sole and exclusive remedy, obtain a
replacement free of charge if you return the defective disk or documentation to us
with a dated proof of purchase.

(b) Software. The Software in this package will materially conform to the
documentation that accompanies it. If the Software fails to operate in accordance
with this warranty, you may, as your sole and exclusive remedy, return all of the
Software and the documentation to the authorized dealer from whom you
acquired it, along with a dated proof of purchase, specifying the problem, and we
will provide you with a new version of the Software or a full refund at our election.

(c) WARRANTY DISCLAIMER. WE DO NOT WARRANT THAT THIS
SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT ITS OPERATION
WILL BE UNINTERRUPTED OR ERROR-FREE. WE EXCLUDE AND
EXPRESSLY DISCLAIM ALL EXPRESS AND IMPLIED WARRANTIES NOT
STATED HEREIN, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

6. Termination. This license and your right to use this Software automatically
terminate if you fail to comply with any provisions of this Agreement, destroy
the copies of the Software in your possession, or voluntarily return the
Software to us. Upon termination you will destroy all copies of the Software
and documentation. Otherwise, the restrictions on your rights to use the
Software will expire upon expiration of the copyright to the Software.

7. Miscellaneous Provisions. This Agreement will be governed by and
construed in accordance with the substantive laws of California. This is the
entire agreement between us relating to the contents of this package, and
supersedes any prior purchase order, communications, advertising or
representations concerning the contents of this package. No change or
modification of this Agreement will be valid unless it is in writing, and is
signed by us.

	Table of Contents
	Introduction to GeoCoder Object
	Geodetic System
	GeoPoint Coding
	1.1: Entering Your GeoCoder Object License
	1.2: Using GeoCoder Object
	GeoPoint Sample
	Recent Changes to GeoCoder Object

	GeoCoder Object Functions
	2.1: GeoCoder Function List
	2.1.1: Initialize GeoCoder Object
	2.1.2: Geocoding ZIP Codes and Addresses
	2.1.3: Retrieve Results
	2.1.4: Retrieve Geocode Data

	License Agreement

