Reference Guide

NameObject

32/644BIT

@altiplatform WEIRNNDATA

Name Object

Reference Guide

Melissa Data Corporation

Copyright

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part
of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Melissa Data Corporation.
This document and the software it describes are furnished under a license agreement, and may be
used or copied only in accordance with the terms of the license agreement.

Copyright © 2012 by Melissa Data Corporation. All rights reserved.

Information in this document is subject to change without notice. Melissa Data Corporation
assumes no responsibility or liability for any errors, omissions, or inaccuracies that may appear in this
document.

Trademarks

Name Object is a registered trademark of Melissa Data Corp. Windows is a registered trademark of
Microsoft Corp.

All other brands and products are trademarks of their respective holder(s).

Melissa Data Corporation
22382 Avenida Empresa
Rancho Santa Margarita, CA 92688-2112

Phone: 1-800-MELISSA (1-800-635-4772)
Fax: 949-589-5211

E-mail: info@MelissaData.com
Internet: www.MelissaData.com

For the most recent version of this document, visit
http://www.melissadata.com/

Document Code: DQTAPINORG
Revision Number: 15102012.11

Dear Developer,
I would like to take this opportunity to thank you for your interest in Melissa Data

products and introduce you to the company.

Melissa Data has been a leading provider of data quality and address management
solutions since 1985. Our data quality software, Cloud services, and data integration
components verify, standardize, consolidate, enhance and update U.S., Canadian, and
global contact data, including addresses, phone numbers, and email addresses, for
improved communications and ROI. More than 5,000 companies rely on Melissa Data to
gain and maintain a single, accurate and trusted view of critical information assets.

This manual will guide you through the functions of our easy-to-use programming tools.
Your feedback is important to me, so please don't hesitate to email your comments or
suggestions to me at: Ray@MelissaData.com.

I'look forward to hearing from you.

Best Wishes,

Raymond F. Melissa
President/CEO

Table of Contents

Entering Your Name Object LiCense ... 2
UsiNng NAGmMeE ODJECT............ccooeeeeeeet ettt 3
Name ObjJect FUNCHIONS ...ttt 7
Initialize Name ObjJecCt ... 9
Configure Name Object Options ... 14
L=y B 10 10 A VZ= LU 1= 23
Process the Name Dataccccvviiiiiiiiinic s e 28
Retrieve Status Information ... 32
Retrieve the Processed Name Datacccccocvviiiiiinniicvicnce e, 37
Modifying Settings for Name Object...........cccccovvviiviiiecceeee 45

Name Object

P4
)
3
)
o
K=
o
0
-,

Name Object automates the handling of name data, making it simple to send
personalized business mail, tailored specifically to the gender of the people in your
mailing list, while screening out vulgar or obviously false names.

® Parse full names into first, middle, and last names, as well as prefixes like “Dr.”
and suffixes like “Jr.”

® Handle name strings that include two names, such as “John and Mary Jones.”
® Correct misspelled first names.
® Flag vulgar names and names that are obviously false.

® Validate first and last names against a database of 100,000 first names and
90,000 last names, covering 99% of the U.S. population.

® Assign gender based on the first name. This can be done as part of parsing or by
itself.

® Select how aggressively Name Object determines the gender of names, based on
the known gender bias of the mailing list, if any.

® Create personalized salutations for business mail. This can be done as part of
parsing or by itself.

® Add your own names, misspellings, vulgar words, and matching patterns.

2 Entering Your Name Object License

Entering Your Name Object License

The license string is a software key that unlocks the functionality of the component.
Without this key, the object does not function. You set the license string using an
environment variable called MD_LICENSE. If you are just trying out Name Object and
have a demo license, you can use the environment variable MD_LICENSE_DEMO for
this purpose. This avoids conficts or confusion if you already have active subscriptions
to other Melissa Data object products.

In earlier versions of Name Object, you would set this value with a call to the
SetLicenseString function. Using an environment variable makes it much easier to
update the license string without having to edit and re-compile the application.

It used to be necessary, even when employing an environment variable, to call the
without passing the license string value. This is longer true. Name Object will still
recognize the , but you should eventually remove any reference to it from your code.

Windows
Windows users can set environment variables by doing the following:

1 Select Start > Settings, and then click Control Panel.

2 Double-click System, and then click the Advanced tab.

3 Click Environment Variables, and then select either System Variables or
Variables for the user X.

4 Click New.
5 Enter “MD_LICENSE” in the Variable Name box.
6 Enter the license string in the Variable Value box, and then click OK.

Please remember that these settings take effect only upon start of the program. It may
be necessary to quit and restart the application to incorporate the changes.

Linux/Solaris/HP-UX/AIX
Unix-based OS users can simply set the license string via the following (use the actual
license string, instead):

export MD LICENSE=A1B2C3D4E5

If this setting is placed in the .profile, remember to restart the shell.

Name Object also used to employ its own environment variable, MDNAME_LICENSE.
The MD_LICENSE variable is shared across the entire Melissa Data product line of
programming tools. Name Object will still use the old license variable for the time
being, but you should transition to using MD_LICENSE as soon as possible.

Name Object
Reference Guide

Using Name Object

Parsing a Name

1

Create an instance of Name Object.
Set NamePtr as New Instance of mdName

Set the data path and initialize Name Object. This points Name Object toward the
data files that it requires to function. If Name Object cannot be initialized, the
GetlnitializeErrorString function will display a description of the cause.

CALL SetPathToNameFiles WITH PathToNameObjectFiles
CALL InitializeDataFiles RETURNING Result

IF Result Is Not TRUE THEN
CALL GetInitializeErrorString RETURNING ErrorString
PRINT ErrorString

End If

Retrieve Name Object information. These functions are not necessary for Name
Object to function, but they provide information that can be useful when
troubleshooting problems with your application.

CALL GetDatabaseDate RETURNING DatabaseDate

CALL GetLicenseExpirationDate RETURNING LicenseExpiration
CALL GetBuildNumber RETURNING BuildNumber

CALL GetDatabaseExpirationDate Returning DatabaseExpiration

Set the various Name Object options. These functions control exactly how Name
Object parses and genderizes a name and constructs a salutation.

CALL SetPrimaryNameHint WITH NameFull

CALL SetFirstNameSpellingCorrection WITH 1
CALL SetMiddleNameLogic WITH ParseLogic

CALL SetSalutationPrefix WITH "Dear"

CALL SetSalutationSuffix WITH ":"

CALL SetSalutationSlug WITH "Valued Customer"
CALL SetGenderAggression WITH 2

CALL SetGenderPopulation WITH 2

Call the AddSalutation function to determine the order in which Name Object
attempts to construct a salutation.

CALL AddSalutation WITH Formal
CALL AddSalutation WITH FirstLast
CALL AddSalutation WITH Informal
CALL AddSalutation WITH Slug

p
)
3
)
o
K=
o
0
-,

4 Using Name Object

6 Before parsing the name, call the ClearProperties function to clear the stored
values from any previous call to the Parse function.

CALL ClearProperties

7 The Parse function operates on the string value, containing a full name, passed to
it via the SetFullName function. If successful, the Parse function returns a value
of 0.

Set FName = "Mr. John J. Smith, Jr. and Ms. Mary S. Jones"
CALL SetFullName WITH FName

CALL Parse

CALL GetResults RETURNING ResultCodes

8 If the Parse function was successful, it will populate as many of the string values
returned by the functions listed below as possible. If a second name is detected,
the function will populate a second set of values, returned by matching functions
with names all ending in “2.”

Check the result codes to determine if the Parse operation was successful. If it
was, then retrieve the results of the parsing. If not, analyze the return value of the
GetResults function.

IF ResultCodes Contain "NSO01" THEN
CALL GetPrefix RETURNING Prefixl
CALL GetFirstName RETURNING FirstNamel
CALL GetMiddleName RETURNING MiddleNamel
CALL GetLastName RETURNING LastNamel
CALL GetSuffix RETURNING Suffixl
CALL GetGender RETURNING Genderl
CALL GetPrefix2 RETURNING Prefix2
CALL GetFirstName2 RETURNING FirstName2
CALL GetMiddleName2 RETURNING MiddleName?2
CALL GetLastName2 RETURNING LastName2
CALL GetSuffix2 RETURNING Suffix2
CALL GetGender2 RETURNING Gender2
CALL GetSalutation RETURNING Salutation

9 If Name Object could not parse the name for any reason, the GetResults function
returns “NS02”.

Else
PROCESS ResultCodes
// See page 32 for a complete list of possible
// Result codes.

ENDIF

Name Object 5
Reference Guide

Genderize a Name
If you already have a parsed name, you can still use Name Object to assign gender
values by making a call to the Genderize function. This function works on the values
passed to the SetPrefix, SetFirstName, SetSuffix, SetPrefix2, SetFirstName2, and
SetSuffix2 functions, returning the results to the GetGender and GetGender2
functions.

1 Call the SetGenderAggression and SetGenderPopulation functions to control
how Name Object handles names that are not strictly male or female.

CALL SetGenderAggression WITH 2
CALL SetGenderPopulation WITH 2

2 The following functions pass on the names to be genderized. While genderizing
works primarily with first names, Name Object will do what it can with whatever
information is available.

CALL SetPrefix WITH Prefixl
CALL SetFirstName WITH FirstNamel
CALL SetSuffix WITH Suffixl
CALL SetPrefix2 WITH Prefix2
CALL SetFirstName2 WITH FirstName2
CALL SetSuffix2 WITH Suffix2

p
)
3
)
o
K=
o
0
-,

CALL Genderize

CALL GetGender RETURNING Genderl
CALL GetGender2 RETURNING Gender2

Generate a Salutation
If you already have parsed name data, you can still use Name Object to generate an
appropriate salutation by making a call to the Salutate function. This function works on
the parameters passed to the first set of name functions (SetPrefix, SetFirstName,
SetLastName, and SetSuffix) and returns the results with the GetSalutation function.

1 Set the salutation options.

CALL SetSalutationPrefix WITH "Dear"
CALL SetSalutationSuffix WITH ":"
CALL SetSalutationSlug WITH "Valued Customer"

2 Use the AddSalutation function to select the order Name Object will use when
selecting a format for the salutation

CALL AddSalutation WITH Formal
CALL AddSalutation WITH FirstLast
CALL AddSalutation WITH Informal
CALL AddSalutation WITH Slug

6 Using Name Object

3 Set the name values to use when constructing the salutation.

CALL SetPrefix WITH Prefixl

CALL SetFirstName WITH FirstNamel
CALL SetLastName WITH LastName
CALL SetSuffix WITH Suffixl

4 Call the Salutate function to generate the salutation.

CALL Salutate

CALL GetSalutation RETURNING Salutation

Name Object 7
Reference Guide

Name Object Functions

Initialize Name Object

These functions initialize Name Object and connect it to its data files.

SetPathTONGMEFIIESueeeeiiiiee e 9
SEILICENSESIIING ...t 9
INItIAliZEDAIAFIIES ..o 10
GetINItialiZEEITOISIINGoeeeeee et 11
GetDAtabasSEDaLecc.coeeceeiieeeee e e 12

GetDatabaseEXpirationDatecccooeieeiiiuieiieeiiiee e 13 =2

GetLicenseEXPIratioNDatec.ccccwoeeeeeeeeeeeeeeeeeeeeeeeee e 13 5

(1)

Configure Name Object Options 8

These functions select, enable or disable the various options of Name Object. E

ADUSGIULBLON ...ttt 14 -
SetFirstNameSpellingCorreCtion...............ooccoiiieiiiiiiiii e 15
SetMIdAIENGMELOGICcooeeeiiiieii e 16
SEtGENABTAGGIrESSIONeeeei et 17
SetGenderPOPUIAtION.................ccccueeeeieeiiiee e 18
SetPrimaryNameHINtcoocouiiee e 19
SeESAIULAHONPIETIX.......oiiiiieiieie ettt ee e e ae s 20
SetSalUtAtiONSIUG.eeiiiiiiiii e 20
SetSalUtatioONSUTTIXooeiieee e 21
ClEAIPIOPEITES ...ttt ae e 22

Set Input Values

The following functions populate the values to be processed by the Parse,
Genderize and Salutate functions.

SEUFUIINGIME ...ttt ereeeeeee s 23
N =T = 7 SO 24
SEOIPIEIIX2 ..ottt e et e e e e aeaees 24
SEIFIrSINGIME ...t e e e e aeaees 25
SEIFIrSINGIME2 ...ttt e e e e e aeaees 25
SEILASINGIME ...t e e eaea s 26
Y 77 G 26

SEISUIIX2. oottt e e e e e e et e areeeeaeeeas 27

8 Name Object Functions

Process the Name Data

The following functions parse a full name, genderize one or two first names or
construct a salutation.

PAISE ... e aaaanaae 28
(1T [(=T 74 = TR 29
=[] = {2 N 29
Standardize COMPANYoicueee et e e s 30

Retrieve Status Information

The following functions return information on the results of the last call to the
Parse, Genderize or Salutate function.

GEOIRESUIES. ..ottt et ene e et eens 32
GetStatusCode (Deprecated)...........c.uuiiieceiiiiiiiiiee e 34
GetErrorCode (Deprecated)cccueiiieiiiiiiiieciee e 34
GetChangeCode (Deprecated)cocuieiiiiiniiiiiiee et 35

Retrieve the Processed Name Data

These function return the parsed and genderized name data, as well as any
generated salutations.

(=T =T 1 RS 37
GOUFIISINGIMIE ..ottt e e e e e e e e e e e e e e e e aaaarees 38
GEIMIAQIEINGME ...t 38
GEILASINGME ... 39
GOESUITIX ..ottt e e e e e e e e e e e e e e e e e e s e e e s e e e saaaeees 39
(1] (=T Lo [T TR 40
GOUPIEIIX2 ettt e e e e e e e e e e e e e e e e s e e e e s asararees 41
GOUFIISINGIMIE2 ...ttt e e e e e e e e e e aaarees 41
GEIMIAAIEBNGME2L ...t 42
GEILASINGME2Z ...t 42
GOESUITIX2 ...ttt e e e e e e e e e e e e e e e e e s e e e e e aaaaeees 43
(1T (=Yg Lo [T RPN 43

(T Y= (1] =11 o) o RS 44

Name Object 9
Reference Guide

Initialize Name Object

These functions initialize Name Object and connect it to its data files.

SetPathToNameFiles

This function accepts a string value parameter that sets the path to the folder
containing the mdName.dat file.

P4
Q
Remarks 3
This function must be set before calling the InitializeDataFiles function. g
(=2
LT
Syntax @
object->SetPathToNameFiles (StringValue) -+
Cc
mdNameSetPathToNameFiles (object, char*)
COM
object.PathToNameFiles = StringValue

SetLicenseString

The License String is a software key (supplied by the developer) that unlocks the full
functionality of Name Object.

Remarks
The license string is included with the documentation you received. If you have not
purchased a license, call Melissa Data toll free at 1-800-MELISSA (1-800-635-4772)
or send an email to sales@MelissaData.com.

If the SetLicenseString function is not called or an incorrect license string is used,
Name Object will not operate.

The license string is normally set using an environment variable, either MD_LICENSE
or MD_LICENSE_DEMO. Calling SetLicenseString is an alternative method for setting
the license string, but applications developed for a production environment should only
use the environment variable.

10 Initialize Name Object

When using an environment variable, it is not necessary to call the SetLicenseString
function.

For more information on setting the environment variable, see page 2 of this guide.
If a valid license string function is not set, Name Object will not operate.

Input Parameters
The SetLicenseString function has one parameter:

LicenseString A string value representing the software license key.

Return Value
The SetLicenseString function returns a Boolean value of 0 (FALSE) or 1 (TRUE). It
will return a FALSE Boolean value if the license string provided is incorrect.

Syntax

BooleanValue = object->SetLicenseString(LicenseString) ;

Cc

IntegerValue = mdNameSetLicenseString (object,LicenseString) ;
COM

BooleanValue = object.SetLicenseString(LicenseString)

InitializeDataFiles

The InitializeDataFiles function opens the needed data files and prepares the Name
Object for use.

Remarks
Before calling this function, you must have successfully called the
SetPathToNameFiles function. If not using an environment variable, you must also
call the SetLicenseString function.

Check the return value of the GetlnitializeErrorString function to retrieve the result of
the initialization call. Any result other than “No Error” means the initialization failed for
some reason.

Name Object
Reference Guide

Return Value
This function returns a value of the enumerated type ProgramStatus.

Value Reason

0 NoError No error - initialization was successful.
1 ConfigFile Could not find mdName.dat.

2 LicenseExpired License key has expired.

3 Unknown An unknown error has occurred.

If any other value other than NoError is returned, check the GetlnitializeErrorString
function to see the reason for the error.

Syntax

ProgramStatus = object->InitializeDataFiles()

C

ProgramStatus = mdNameInitializeDataFiles (object)
COoM

ProgramStatus = object.InitializeDataFiles

GetlnitializeErrorString

This function returns a descriptive string value to describe the error from the
InitializeDataFiles function.

Remarks
The GetlnitializeErrorString function returns a string value describing the error
caused when the InitializeDataFiles function cannot be called successfully.

Syntax

StringValue = object->GetInitializeErrorString/()

Cc

StringValue = mdNameGetInitializeErrorString (object)
COM

StringValue = object.GetInitializeErrorString

11

P4
)
3
)
o
K=
o
0
-,

12 Initialize Name Object

GetBuildNumber

The GetBuildNumber function returns the current development release build number
of Name Object.

Syntax

StringValue = object->GetBuildNumber ()

C

StringValue = mdNameGetBuildNumber (object)
COM

StringValue = object.GetBuildNumber

GetDatabaseDate

The GetDatabaseDate function returns a string value that represents the revision date
of your Name Object data files.

Syntax

StringValue = object->GetDatabaseDate ()

Cc

StringValue = mdNameGetDatabaseDate (object)
COM

StringValue = object.GetDatabaseDate

Name Object
Reference Guide

GetDatabaseExpirationDate

This function returns a string value indicating the expiration date of the current
database file (mdName.dat).

Syntax

StringValue = object->GetDatabaseExpirationDate ()

C

StringValue = mdNameGetDatabaseExpirationDate (object)
COM

StringValue = object.GetDatabaseExpirationDate

GetLicenseExpirationDate

This function returns a string value containing the expiration date of the current license
string.

Remarks
Call this function to determine when your current license will expire. After this date,
Name Object will no longer function.

Syntax

StringValue = object->GetLicenseExpirationDate ()
C

StringValue = mdNameGetLicenseExpirationDate
COoM

StringValue = object.GetLicenseExpirationDate

13

P4
)
3
)
o
K=
o
0
-,

14 Configure Name Object Options

Configure Name Object Options

These functions select, enable or disable the various options of Name Object.

AddSalutation

This function sets the order of precedence for formats to use when creating a
salutation.

Remarks
Use this function to select the preferred format or formats to use when generating
salutations via the Parse or Salutate function.

There are four possible formats to use for creating salutations. The options are:

Format Example

Formal Dear Mr. Smith:
Informal Dear John:

First/Last Dear John Smith:

Slug Dear Valued Customer:
Blank No Salutation

If the AddSalutation function has not been called, Name Object will attempt to create
a salutation using the following order. Formal, Informal, First/Last, and Slug. In other
words, Name Object will attempt to create a formal salutation and, if unable to
genderize the name, will attempt to use the informal salutation next.

This function allows you to set your own order and excluded unwanted salutation
formats.

Example
The following Visual Basic code would switch the preference order of the Informal and
First/Last salutation.

NameObj->AddSalutation (Formal)
NameObj->AddSalutation (FirstLast)
NameObj->AddSalutation (Informal)
NameObj->AddSalutation (S1lug)
Name Obiject only considers the first four calls to the AddSalutation function will be
recognized. Any more will be ignored.

Name Object
Reference Guide

Values
The AddSalutation function uses an enumerated value of the type Salutations.
Option Value
Formal 0
Informal 1
FirstLast 2
Slug 3
Blank 4
Syntax
object->AddSalutation (enum Salutations)
C
mdNameAddSalutations (object, mdNameSalutations)
COoM

object.AddSalutation (Salutations)

SetFirstNameSpellingCorrection

This function accepts an integer value that enables or disables spelling correction of
first names during parsing.

Remarks
Name Object uses a database of common misspelled given names to correct the
return values of GetFirstName and GetFirstName2 functions.

Set this function to 1 to enable this feature. Set it to 0 to disable.

Syntax

object->SetFirstNameSpellingCorrection (int) ;

Cc

mdNameSetFirstNameSpellingCorrection (object, int) ;

COM

object.FirstNameSpellingCorrection = integer

15

P4
)
3
)
o
K=
o
0
-,

16 Configure Name Object Options

SetMiddleNameLogic

This function controls the settings for how Name Object deals with middle names.

Remarks
Some names can be ambiguous with regards to the middle word of a full name. It may
be a middle name or it may be the first part of a hyphenated last name, but the hyphen
has been omitted for some reason.

Normally, Name Object assumes that, in the absence of a hyphen, recognizable last
names in the middle of a full name are treated as part of a hyphenated last name.
“Mary O’Malley Kelly” is parsed into first name “Mary” and last name “O’Malley-Kelly.”

On the other hand, “Colleen Marie Sullivan” is parsed into first name “Colleen,” middle
name “Marie,” and last name “Sullivan.”

This function accepts an enumerated value of the type MiddleNamelLogic. The value of
the enumerated parameter determines the setting for the middle name logic.

Enum Value Val Setting

ParselLogic 0 Default value. Name Object behaves as described above.
This is how Name Object behaves if this function is not
called.

HypenatedLast 1 The middle word is assumed to be part of the last name.
“Matthew Edward Jones” is treated as “Matthew Edward-
Jones.”

MiddleName 2 The middle word is assumed to be a middle name. For the
name “Mary O’Malley Kelly,” O’'Malley is assumed to be the
middle name.

When a hyphen is present, the hyphenated word is always treated as the last name,
regardless of content.

Syntax
object->SetMiddleNameLogic (enumMiddleNameLogic) ;
C
mdNameSetMiddleNameLogic (object, IntegerValue) ;
COoM
object .MiddleNameLogic (enumMiddleNameLogic)

Name Object 17
Reference Guide

SetGenderAggression

This function sets how aggressively Name Object will attempt to genderize neutral first
names.

Remarks
Normally, Name Object will assign a value of “N” when attempting to genderize a first
name that can easily be male or female, such as “Pat,” “Chris” or “Tracy.” Every name
is assigned a score from 7 to 1, with 7 being always male, 4 being completely neutral,
and 1 being always female.

Using this function in conjunction with the SetGenderPopulation function, you can pa
instruct Name Object how much preference it gives to one gender or the other when g
assigning a gender to a normally neutral name. This function can accept the following o
values. (o)
Definition .g.
. (2]
Aggressive -~
Neutral
Conservative

This table shows how the settings for SetGenderAgression and
SetGenderPopulation affect genderizing:

Male Female
Always Often Normally | Neutral | Normally Often Always

Aggression (7) (6) (5) 4) (3) () (1)
Conservative

Neutral M N N N N N F

2 Male M M N N N N F

® Female M N N N N F F
Neutral

Neutral M M N N N F F

2 Male M M M N N F F

® Female M M N N F F F
Aggressive

Neutral M M M N F F F

2 Male M M M M N F F

® Female M M N F F F F

18

Configure Name Object Options

Syntax

object->SetGenderAggression (int) ;

Cc

mdNameSetGenderAggression (object, int) ;

COM

object.GenderAggression = integer

SetGenderPopulation

This function sets the gender balance of the source data, either predominantly male,
predominantly female or neutral.

Remarks
If you know that a mailing will be comprised of predominantly one gender or the other,
use this function to set the gender bias to use when genderizing names, either via the
Parse or Genderize function.

SetGenderPopulation accepts an enumerated value. The possible values for this
function are:

Value Definition

Male Bias toward male
Mixed Evenly split.
Female Bias toward female

See SetGenderAggression on page 17 for more information on how Name Object
assigns gender to a first name.

Syntax

object->SetGenderPopulation (int) ;

Cc

mdNameSetGenderPopulation (object, int) ;

COM

object.GenderPopulation = integer

Name Object
Reference Guide

SetPrimaryNameHint

This function sets an integer value indicating the most likely format of the value passed

to the SetFullName function.

Remarks

This setting helps the name parser in cases when the order and formatting of the
SetFullName function value are unclear.

Full or normal name order is <Prefix> <FirstName> <MiddleName> <LastName>

<Suffix>.

Inverse name order is <LastName> <Suffix>, <Prefix> <FirstName> <MiddleName>.

The default is 4 (“Varying”). The possible values are:

Code Meaning

1 DefinitelyFull

2 VeryLikelyFull

3 ProbablyFull

4 Varying

5 Probablylnverse
6 VeryLikelylnverse
7 Definitely Inverse
8 MixedFirstName
9 MixedLastName

Description

Name will always be treated as normal name order,
regardless of formatting or punctuation.

Name will be treated as normal name order unless
inverse order is clearly indicated by formatting or
punctuation.

If necessary, statistical logic will be employed to
determine name order, with a bias toward normal
name order.

If necessary, statistical logic will be employed to
determine name order, with no bias toward either
name order.

If necessary, statistical logic will be employed to
determine name order, with a bias toward inverse
name order.

Name will be treated as inverse name order unless
normal order is clearly indicated by formatting or
punctuation.

Name will always be treated as inverse name
order, regardless of formatting or punctuation.

Name field is expected to only contain prefixes,
first, and middle names.

Name field is expected to only contain last names
and suffixes.

19

P4
)
3
)
o
K=
o
0
-,

20 Configure Name Object Options

Syntax
object->SetPrimaryNameHint (int) ;
C
mdNameSetPrimaryNameHint (object, int);
COoM
object.PrimaryNameHint = integer

SetSalutationPrefix

Accepts a string value and sets the text preceding the name for salutations generated
by the Parse and Salutate functions.

Remarks
This function lets you set the preferred text that you want before the proper name in
salutations generated by the Parse and Salutate functions. The default = “Dear.”

Syntax

object->SetSalutationPrefix (StringValue)
C

mdNameSetSalutationPrefix (object, char*)
COoM

object.SalutationPrefix = StringValue

SetSalutationSlug

Accepts a string value and sets the text that will be substituted for a name into
salutations generated by the Salutate and Parse functions, when no parsed or
parseable name are present in the required functions.

Remarks
If the value passed to the SetFullName function cannot be parsed by the Parse
function, or there is insufficient information in the return values of the SetPrefix,
SetFirstName, SetLastName and SetSuffix functions for the Salutate function to
successfully generate a salutation, this string will be substituted for the name.

Name Object
Reference Guide

The default value is “Valued Customer.”

Syntax

object->SetSalutationSlug (StringValue)
C

mdNameSetSalutationSlug (object, char¥)
COoM

object.SalutationSlug = StringValue

SetSalutationSuffix

Accepts a string value and sets the text that follows the name for salutations generated
by the Parse and Salutate functions.

Remarks
This function lets you set the preferred text that you want after the proper name in

salutations generated by the Parse and Salutate functions. The default =

Syntax

object->SetSalutationSuffix (StringValue)
C

mdNameSetSalutationSuffix (object, char*)
COoM

object.SalutationSuffix = StringValue

21

P4
)
3
)
o
K=
o
0
-,

22 Configure Name Object Options

ClearProperties
This function clears both the return values and parameters of the various name string
functions.
Remarks

This function resets the following functions to empty strings.
SetPrefix SetPrefix2 SetFirstName SetFirstName2
SetlLastName SetSuffix SetSuffix2 SetFullName
GetPrefix SetPrefix GetFirstName GetMiddleName
GetLastName GetSuffix GetGender GetPrefix2
GetFirstName2 GetMiddleName?2 GetlLastName2 GetSuffix2
GetGender2 GetSalutation GetResults

This prevents values from the previous call to the Parse, Genderize or Salutate
function from persisting and potentially causing confusion with values from the current
call.

Syntax

object->ClearProperties ()

Cc

mdNameClearProperties (object)

COM

object.ClearProperties

Name Object
Reference Guide

Set Input Values

The following functions populate the values to be processed by the Parse,
Genderize and Salutate functions.

SetFullIName

This function sets the full name to be processed by the Parse function.

Remarks
This function passes the text to be processed by a call to the Parse function. It must be
populated before the Parse function can be called.

This function can contain one or two names. The following strings are all valid.
“Mr. John Q. Smith, Jr.”
“Ms. Mary S. Jones”
“John Q. and Mary S. Smith”
“John Q. Smith and Mary S. Jones”
“Smith, John Q. and Mary S.”
These are just examples and not the only valid formats for full name strings.

Syntax
object->SetFullName (StringValue)
C
mdNameSetFullName (object, char*)
COoM
object.FullName = StringValue

23

P4
)
3
)
o
K=
o
0
-,

24 Set Input Values

SetPrefix

This function sets the name prefix prior to a call to the Salutate or Genderize function.

Remarks
Use this function to pass a pre-parsed prefix prior to a call to the Salutate or
Genderize function.

Syntax

object->SetPrefix (StringValue)
C

mdNameSetPrefix (object, char¥)
COoM

object.Prefix = StringValue

SetPrefix2

This function sets the second name prefix prior to a call to the Genderize function.

Remarks
Use this function to pass a pre-parsed prefix prior to a call to the Genderize function.

Syntax

object->SetPrefix2 (StringValue)
Cc

mdNameSetPrefix2 (object, char¥*)
COM

object.Prefix2 = StringValue

Name Object
Reference Guide

SetFirstName

This function sets the first name prior to a call to either the Genderize or Salutate
function.

Remarks
This function passes a pre-parsed first name prior to a call to either the Genderize or
Salutate function.

Syntax

object->SetFirstName (StringValue)
Cc

mdNameSetFirstName (object, char*)
COM

object.FirstName = StringValue

SetFirstName2

This function sets a second first name prior to a call to the Genderize function.

Remarks
This function passes an optional second pre-parsed first name prior to a call to the
Genderize function.

Syntax

object->SetFirstName2 (StringValue)
C

mdNameSetFirstName2 (object, char¥)
COM

object.FirstName2 = StringValue

25

P4
)
3
)
o
K=
o
0
-,

26 Set Input Values

SetLastName
This function sets the last name prior to a call to the Salutate function.
Remarks
Use this function to pass a pre-parsed last name prior to a call to the Salutate function.
Syntax
object->SetLastName (StringValue)
C
mdNameSetLastName (object, char*)
CoMm
object.LastName = StringValue

SetSuffix

This function sets the first name suffix prior to a call to the Salutate or Genderize
function.

Remarks
Use this function to pass a pre-parsed suffix prior to a call to the Salutate or
Genderize function.

Syntax

object->SetSuffix (StringValue)
Cc

mdNameSetSuffix (object, char¥)
COM

object.Suffix = StringValue

Name Object
Reference Guide

SetSuffix2

This function sets the second name sulffix prior to a call to the Salutate or Genderize
function.

Remarks
Use this function to pass a pre-parsed suffix prior to a call to the Genderize function.

Syntax

object->SetSuffix2 (StringValue)
C

mdNameSetSuffix2 (object, char¥)
COoM

object.Suffix2 = StringValue

27

P4
)
3
)
o
K=
o
0
-,

28 Process the Name Data

Process the Name Data

The following functions parse a full name, genderize one or two first names or
construct a salutation.

Parse

This function parses the string value passed to the SetFullName function and extracts
prefix, first name, middle name, last name, and suffix information for up to two names.
It also genderizes the first names and generates a salutation for one of the full names
extracted.

Remarks
The Parse function analyzes the contents of the SetFullName function, populating the
return values of as many of the following functions as possible:

GetPrefix SetPrefix GetFirstName GetMiddleName
GetLastName GetSuffix GetGender GetPrefix2
GetFirstName2 GetMiddleName2 GetlLastName2 GetSuffix2
GetGender2 GetSalutation GetResults

The SetFullName function must be called before the Parse function is called. The
InitializeDataFiles function must also have been successfully called before invoking
the Parse function.

If more than one name is present in the parameter of the SetFullName function, the
Parse function will create a salutation for the first name listed only. In other words, if
the value of the SetFullName function contains “John and Mary Smith,” the
GetSalutation function will return “Mr. Smith” only.

After a Parse function call, the GetResults function will return an “NS01” code if the
parsing was successful, “NS02” otherwise.

Syntax

IntegerValue = object->Parse ()

Cc

IntegerValue = mdNameParse (object)
COM

IntegerValue = object.Parse

Name Object 29
Reference Guide

Genderize

This function determines the gender from pre-parsed data passed to the SetPrefix,
SetFirstName, and/or SetSuffix function and (if set) the SetPrefix2, SetFirstName2,
and/or SetSuffix2 function.

Remarks
Genderizing is primarily based on gender data for first names, but Name Object will
also use Prefix or Suffix information to improve accuracy. For example, a suffix of “Ms.”
would clearly indicate a woman’s name, even if the name was predominantly male
(such as “Michael,” which can be a woman’s name), while a suffix of “Sr.” or “Jr.” would
suggest a man’s name, even if the first name was normal female or indeterminate
(such as “Chris” or “Kim”).

None of the functions above are specifically required. Genderizing can be done solely
on the basis of suffix values, if necessary. Obviously, at least some information is
required for genderizing to take place.

P4
)
3
)
o
K=
o
0
-,

After values have been passed to any of the above functions, the Genderize function
will attempt to assign a gender to each name. Use the GetGender and GetGender2
functions respectively to retrieve the gender information

If you are working with unparsed full names, you should used the Parse function

instead.
Syntax

IntegerValue = object.Genderize ()

C

IntegerValue = mdNameGenderize (object)
COoM

IntegerValue = object.Genderize

Salutate

This function creates a salutation from the pre-parsed values passed to the SetPrefix,
SetFirstName, SetLastName, and SetSuffix functions and populates the value
returned by the GetSalutation function.

30 Process the Name Data

Remarks
If you already have parsed name data, you can use this function to automatically
generate a salutation, using the salutation setting established in the AddSalutation
function.

The Salutate function only uses the values passed via the SetPrefix, SetFirstName,
SetLastName, and SetSuffix functions. At the very minimum The SetFirstName and
SetLastName functions must be called prior to calling the Salutate function.

If you are working with unparsed full names, you should use the Parse function

instead.
Syntax

IntegerValue = object->Salutate ()

C

IntegerValue = mdNameSalutate (object)
COoM

IntegerValue = object.Salutate

StandardizeCompany

This function standardizes a company name using common abbreviations and
capitalization.

Remarks
This function accepts a single string value containing a company and returns a string
value containing the same company name with standard abbreviations, punctuation
and capitalization rules applied.

Standard words are shortened. “Incorporated” would become “Inc.” and “Corporation”
would be shortened to “Corp.”

Unrecognized words four characters or shorter are assumed to be acronyms or
initialisms and converted to all upper case.

Name Object
Reference Guide

All other words would be capitalized.

Syntax

StringValue

C
StringValue

COoM
StringValue

object->StandardizeCompany (StringValue)

mdNameStandardizeCompany (object, StringValue)

object.StandardizeCompany (StringValue)

31

P4
)
3
)
o
K=
o
0
-,

32 Retrieve Status Information

Retrieve Status Information

The following functions return information on the results of the last call to the
Parse, Genderize or Salutate function.

GetResults

This function returns a comma-delimited string of four-character codes which detail the
success of the last function call and the cause of any errors any errors that occurred
during the last call to the Parse, Genderize or Salutate function.

Remarks

The GetResults function replaces the GetStatusCode and GetErrorCode functions,
providing a single source of information about the last call and eliminating the need to
call multiple functions.

The function returns one or more of the following codes in a comma-delimited list.

Code Description

NSO01 Parsing successful Name parsing was successful.

NS02 Error while parsing There was error. Check error codes
below

NSO03 First Name 1 had its spelling corrected The spelling of the return value of the
GetFirstName function was
corrected.

NS04 First Name 2 had its spelling corrected ~ The spelling of the return value of the
GetFirstName2 function was
corrected.

NS05 First Name 1 was found in the firstname The return value of the

lookup table. GetFirstName function was verified
against Name Object’s table of first
names.

NS06 Last Name 1 was found in the lastname The return value of the

lookup table. GetLastName function was verified
against Name Object’s table of last
names.

NSO07 First Name 2 was found in the firstname The return value of the

lookup table. GetFirstName2 function was verified

against Name Object’s table of first
names.

Name Object 33
Reference Guide

Code Description
NS08 Last Name 2 was found in the last name The return value of the
lookup table. GetLastName2 function was verified
against Name Object’s table of last
names.
NEO1 Unrecognized format Two names were detected but the

value passed to the SetFullName
function was not in a recognized

format.
NEO2 Multiple first names detected Multiple first names — could not
accurately genderize.
NEO3 Vulgarity detected A vulgarity was detected in the name.
NEO4 Suspicious word detected The name contained words found on

the list of nuisance names (such as
“Mickey Mouse”).

NEO5 Company name detected. The name contained words normally
found in a company name.

P4
)
3
)
o
K=
o
0
-,

NEO6 Non-alphabetic character detected. The name contained a non-
alphabetic character.

Syntax

StringValue = object->GetResults() ;

C

StringValue = mdNameGetResults (object) ;
COoM

StringValue = object.Results

34 Retrieve Status Information

GetStatusCode (Deprecated)

This function has been deprecated. You should use the GetResults function
instead. See page 32 for documentation on this function.

This function returns a one character string value indicating the success or failure of
the most recent call to the Parse function.

Remarks
The GetStatusCode function returns one of two possible string values:
Value Description
Vv Parsing was successful
X There was an error. Check the GetErrorCode function.
Syntax
StringValue = object->GetStatusCode ()
C
StringValue = mdNameGetStatusCode (object)
COoM
StringValue = object.StatusCode

GetErrorCode (Deprecated)

This function has been deprecated. You should use the GetResults function
instead. See page 32 for documentation on this function.

This function returns a one-character string value containing a code describing an
error caused by a call to the Parse, Genderize or Salutate function.

Remarks
If the Parse, Genderize or Salutate function return a value other than zero, an error
has occurred. Check this function to determine the reason. The possible return values
are listed below.

Code Reason

D Two names were detected but the value passed to the SetFullName function was
not in a recognized format.

F Multiple first names — could not accurately genderize.

Name Object 35
Reference Guide

Code Reason

P A vulgarity was detected in the name.

S The name contained words found on the list of nuisance names (such as “Mickey
Mouse”

The name contained words normally found in a company name.

The named contained a non-alphabetic character.

Syntax
StringValue = object->GetErrorCode ()
P4
(od Q
StringValue = mdNameGetErrorCode (object) ?D
COM 8
StringValue = object.ErrorCode ‘G_D
0
-,

GetChangeCode (Deprecated)

This function has been deprecated. You should use the GetResults function
instead. See page 32 for documentation on this function.

This function returns a string indicating whether the contents of the GetFirstName
function, the GetFirstName2 function, or both, were corrected from the original
SetFullName function.

Remarks
If First Name spell correction is enabled, this function will indicate if one or both parsed
first names were changed during the Parsing process due to a misspelled first name.

This function can return one of the following values:

Value Description
1 Spelling of the value passed to SetFirstName function was corrected.
2 Spelling of the value passed to SetFirstName2 function was corrected.

B Both names were corrected.

36 Retrieve Status Information

If neither field is changed, or First Name spell correction was disabled, this function will
return an empty string.

Syntax

StringValue = object->GetChangeCode ()

C

StringValue = mdNameGetChangeCode (object)
COoM

StringValue = object.ChangeCode

Name Object
Reference Guide

Retrieve the Processed Name Data

These function return the parsed and genderized name data, as well as any
generated salutations.

GetPrefix

This function returns the first prefix (such as “Mr.” or “Dr.”) from a full name parsed by
the Parse function.

Remarks
This function will return the prefix after a successful call to the Parse function. If the
parameter passed to the SetFullName function only contained a single name prior to
calling the Parse function, the prefix, if any, will be returned here. If two names were
parsed, the first of the two prefixes will be returned by this function.

Syntax

StringValue = object->GetPrefix

C

StringValue = mdNameGetPrefix (object)
COoM

StringValue = object.Prefix

37

P4
)
3
)
o
K=
o
0
-,

38 Retrieve the Processed Name Data

GetFirstName

This function returns the first name from a full name parsed by the Parse function.

Remarks
This function will return the first name after a successful call to the Parse function. If
the parameter passed to the SetFullName function only contained a single name prior
to calling the Parse function, the first name will be returned here. If two names were
parsed, the first of the two first names will be returned by this function.

Syntax

StringValue = object->GetFirstName

Cc

StringValue = mdNameGetFirstName (object)
COM

StringValue = object.FirstName

GetMiddleName

This function returns the first middle name from a full name parsed by the Parse
function.

Remarks
This function will return the middle name after a successful call to the Parse function. If
the parameter passed to the SetFullName function only contained a single name prior
to calling the Parse function, the middle name, if any, will be returned here. If two
names were parsed, the first of the two middle names will be returned by this function.

Syntax

StringValue = object->GetMiddleName

C

StringValue = mdNameGetMiddleName (object)
COM

StringValue = object.MiddleName

Name Object 39
Reference Guide

GetLastName

This function returns the last name from a full name parsed by the Parse function.

Remarks
This function will return the last name after a successful call to the Parse function. If
the parameter passed to the SetFullName function only contained a single name prior
to calling the Parse function, the last name will be returned here. If two names were
parsed, the first of the two last names will be returned by this function.

Syntax Z

StringValue = object->GetLastName g

®

c 0

StringValue = mdNameGetLastName (object) o

LT

(1)

COM 2}
StringValue = object.LastName

GetSuffix

This function returns the first suffix (such as “Jr.” or “lll.”) from a full name parsed by
the Parse function.

Remarks
This function will return the suffix after a successful call to the Parse function. If the
parameter passed to the SetFullName function only contained a single name prior to
calling the Parse function, the suffix, if any, will be returned here. If two names were
parsed, the first of the two suffixes will be returned by this function.

Syntax

StringValue = object->GetSuffix

C

StringValue = mdNameGetSuffix (object)
COM

StringValue = object.Suffix

40 Retrieve the Processed Name Data

GetGender

This function returns the gender name if one could be determined by either the Parse
or Genderize function.

Remarks

This function returns a one-character string indicating the gender of the first name
found in the parameter passed to the SetFullName function by a call to the Parse

function.

This function will also return the results of a call to the Genderize function.

Genderizing is primarily based on gender data for first names, but Name Object will
also use Prefix or Suffix information to improve accuracy. For example, a suffix of “Ms.’
would clearly indicate a woman’s name, even if the name was predominantly male,
while a suffix of “Sr.” or “Jr.” would suggest a man’s name.

The possible values returned by this function are:

Code Description
M Male
F Female
U Unknown first name or no first name present
N A neutral first name
Syntax
StringValue = object->GetGender ()
C
StringValue = mdNameGetGender
COoM
StringValue = object.Gender

Name Object
Reference Guide

GetPrefix2

This function returns the second prefix (such as “Mr.” or “Dr.”) from a full name parsed
by the Parse function.

Remarks
This function will return the second prefix after a successful call to the Parse function if
the parameter passed to the SetFullName function contained two names prior to
calling the Parse function.

Syntax

StringValue = object->GetPrefix2

Cc

StringValue = mdNameGetPrefix2 (object)
COM

StringValue = object.Prefix2

GetFirstName2

This function returns the second first name from a full name parsed by the Parse
function.

Remarks
This function will return the second first name after a successful call to the Parse
function, if the parameter passed to that function contained two names.

Syntax

StringValue = object->GetFirstName2

C

StringValue = mdNameGetFirstName2 (object)
COoM

StringValue = object.FirstName2

41

P4
)
3
)
o
K=
o
0
-,

42 Retrieve the Processed Name Data

GetMiddleName2

This function returns the second middle name from a full name parsed by the Parse
function.

Remarks
This function will return the second middle name after a successful call to the Parse
function if the parameter passed to the SetFullName function contained two names
prior to calling the Parse function.

Syntax

StringValue = object->GetMiddleName2

Cc

StringValue = mdNameGetMiddleName2 (object)
COM

StringValue = object.MiddleName2

GetLastName?2

This function returns the second last name from a full name parsed by the Parse
function.

Remarks
This function will return the second last name after a successful call to the Parse
function if the parameter passed to the SetFullName function contained two names
prior to calling the Parse function.

Syntax

StringValue = object->GetLastName

C

StringValue = mdNameGetLastName (object)
COoM

StringValue = object.LastName

Name Object 43
Reference Guide

GetSuffix2

This function returns the second suffix (such as “Sr.” or “IV.”) from a full name parsed
by the Parse function.

Remarks
This function will return the second suffix after a successful call to the Parse function
the parameter passed to the SetFullName function contained two names prior to
calling the Parse function.

Syntax Z

StringValue = object->GetSuffix2 g

®

¢ o)

StringValue = mdNameGetSuffix2 (object) o

LT

(1)

COM Q
StringValue = object.Suffix2

GetGender2

This function returns the gender of any second name if one could be determined by
either the Parse or Genderize function

Remarks
This function returns a one-character string value indicating the gender of any second
name found in the parameters passed to the SetFullName function by a call to the
Parse function.

This function would also return the gender based on second set of name data after a
call Genderize function.

44

Retrieve the Processed Name Data

More information on genderizing and the possible values returned by this function
found in the section about the GetGender function.

Syntax

StringValue = object->GetGender?2 ()

C

StringValue = mdNameGetGender2 (object)
COoM

StringValue = object.Gender2

GetSalutation

This function returns a generated salutation string value after a successful call to the
Parse or Salutate function.

Remarks
The GetSalutation function returns the contents of the salutation string generated
according to the preferences set by the SetSalutationPrefix, SetSalutationSlug, and
SetSalutationSuffix functions. The return value of this function is set by successful
calls to either the Parse or Salutate function.

Syntax

StringValue = object->GetSalutation()

C

StringValue = mdNameGetSalutation (object)
COM

StringValue = object.Salutation

Name Object 45
Reference Guide

Modifying Settings for Name Object

The main installation directory for Name Object includes a plain text file named
mdName.cfg, which allows you to add to and override some of Name Object’s default
settings. You can add entries to and remove entries from the installed tables of:

® Prefixes

® First names

® First name spelling corrections
® Casing for last name prefixes
® Proper casing of last names

®* Name suffixes

® Dual name connectors

® Suspect names and vulgarities

P4
)
3
)
o
K=
o
0
-,

® Dual name patterns

®* Non-Company acronyms

® Company names and words

Each section of the file begins with the name of the table enclosed in square brackets.
To add an entry to the table, simply add a line to that section. If that entry duplicates
one in the default table, mdName uses the entry in the configuration file, allowing you
to override the original settings.

To remove an existing entry from the default table, begin the line with a dash or minus
sign (*-").

An entry consists of a single line of text containing several values separated by
commas.

For example, a line in the Prefix section of the file must follow this format:
<First Name>, <Sex>, <Misspelling>, <Rank>, <Case>

Replacing each placeholder with a real value, the actual entry might look like this:
William, 7

Unused values at the end of a line are optional. Empty values in the middle of a line
must have the necessary comma.

46 Modifying Settings for Name Object

Prefix

[Prefix]

Modifies the list of name prefixes.

<Prefix>, <Sex>, <Dual Expansion>, <Case>

Field Contents

<Prefix> Word/phrase to look up.

<Sex> The gender associated with this prefix, if any (M or F).
<Dual Expansion> Replacement for this prefix when building dual names (for

example, “Dr. & Mrs.” for “D/M”).

<Case> Proper Casing for this word/phrase.

First Name

[FirstName]

Modifies the list of first names used for parsing and genderizing.

<First Name>, <Sex>, <Misspellings>, <Rank>, <Case>

Field Contents
<First Name> The name to look up.
<Sex> The gender associated with the name:

* 1= Always female
® 2 =Usually female
® 3 =0Often female

® 4 = Neutral

* 5=0ften male

® 6 = Usually male

® 7= Always male.

<Misspellings> ‘X’ if the name is misspelled (if the correction is known, add
it to [FirstNameFix]).

<Rank> Name's rank in U.S. Census data. Leave blank.

<Case> Proper casing for this name.

Name Object 47
Reference Guide

First Name Fix

[FirstNameFix]

A list of misspelled first names and the correct spelling. For a correction to take place,
the misspelled name must also exist in the First Name section, with an “X” in the
<Misspelling> field.

<Misspelling>, <Correction>

Field Contents
<Misspelling> A misspelled first name.
<Correction> The correction (properly cased). >
Y
. 3
Last Name Prefix o
[LNPrefix] o]
S
List of the proper casing for last name prefixes, such as “von” in “von Beethoven.” g
<Last Name Prefix>, <Case> -
Field Contents
<Last Name Prefix> Last name prefix.
<Case> Proper Casing for this word.
Last Name
[LastName]

List of last names, including proper casing.

<Last Name>, <Rank>, <O-Name>, <Case>

Field Contents

<Last Name> Name to look up.

<Rank> Name's rank in the U.S. Census data. Leave this field blank.
<O-Name> ‘X’ if the name is an Irish O'Name (such as “O’Kelly”).

<Case> Proper Casing for this name.

48 Modifying Settings for Name Object

Suffix

[Suffix]

Modifies the list of name suffixes.

<Suffix>, <Prefix>, <Salutation Remove>, <Dual Name Removes>,

<Case>
Field Contents
<Suffix> Word/phrase to look up.
<Prefix> Prefix associated with this suffix (ie, “Dr.” for “MD”).
<Salutation Remove> ‘X" if this suffix should be removed when generating

salutations.

<Dual Name Removes ‘X" if this suffix should be removed when dual name splitting.
<Case> Proper casing for this word/phrase.

Dual Name Connector

[DualIndicator]

Modifies the list of dual name connecting words.

<Dual Name Connector>, <Delete>, <Case>

Field Contents
<Dual Name Connectors> Word/phrase to look up.
<Delete> ‘X’ if the connector should be removed (the name will not be

considered a dual name).

<Case> Proper casing for this connector.

Name Object 49
Reference Guide

Suspect Words

[Suspect]
Modifies the list of suspicious words, phrases, and possible vulgarities.

<Word/Phrase>, <Indicators, <Case>

Field Contents
<Word/Phrase> Word/phrase to look up.
<Indicators> Word indicator:

® V — Vulgarity
¢ C — Company indicator
® S — Suspicious name indicator

<Case> Proper Casing for this word/phrase.

Dual Name Patterns
[DualPattern]

P4
)
3
)
o
K=
o
0
-,

Modifies the list of patterns used for parsing dual names.

<Pattern>, <Counts>, <Name Types>, <Split Type>

Field Contents
<Patterns> Pattern:
®* P — Prefix

® F —Firstname

¢ & — Connector word/phrase

¢ ?— Unknown (not found in lookups)
<Counts> Counts (each position corresponds to position in <Pattern>:

® > — More than one word of that type

® =— Exactly one word of that type

® (space) — Any number of words of that type
<Name Types> Name Types:

®* 1 —Fullname

® 2 —Inverse name

® 4 — Mixed first name

® 8 — Mixed last name

50 Modifying Settings for Name Object

Field Contents
<Split Types> How the pattern should be split:
® 1 — Mr. John Smith & Ms. Mary Jones
¢ 2 — John & Jane Smith
¢ 3 — Mr. & Ms. John & Jane Smith
® 4 — Mr. &Ms. John Smith
¢ 5— Mr. John & Ms. Jane Smith
® 6 — Smith, John & Smith, Jane
® 7 — Smith, John & Jane
® 8 — Smith, Mr. John & Ms. Jane
® 99— Mr. John & Ms. Jane
® 10— Mr. & Ms. John & Jane
® 11— Mr. & Ms. John
® 12— John Smith & Jane

Acronym

[Acronym]

These words are not acronyms.

<lookup>
Field Contents
<lookup> This word is not an acronym.
Company
[Company]

Words and phrases from company names that do not follow common casing rules.

<Company>, <Case>

Field Contents
<Company > Word/phrase to look up.

<Case> Proper Casing for this word/phrase.

	DQT_API_Name_RG_Cover
	DQT_API_Name_RG_NoCover
	Name Object
	Table of Contents
	Name Object
	Entering Your Name Object License
	Using Name Object
	Name Object Functions
	Initialize Name Object
	SetPathToNameFiles
	SetLicenseString
	InitializeDataFiles
	GetInitializeErrorString
	GetBuildNumber
	GetDatabaseDate
	GetDatabaseExpirationDate
	GetLicenseExpirationDate

	Configure Name Object Options
	AddSalutation
	SetFirstNameSpellingCorrection
	SetMiddleNameLogic
	SetGenderAggression
	SetGenderPopulation
	SetPrimaryNameHint
	SetSalutationPrefix
	SetSalutationSlug
	SetSalutationSuffix
	ClearProperties

	Set Input Values
	SetFullName
	SetPrefix
	SetPrefix2
	SetFirstName
	SetFirstName2
	SetLastName
	SetSuffix
	SetSuffix2

	Process the Name Data
	Parse
	Genderize
	Salutate
	StandardizeCompany

	Retrieve Status Information
	GetResults
	GetStatusCode (Deprecated)
	GetErrorCode (Deprecated)
	GetChangeCode (Deprecated)

	Retrieve the Processed Name Data
	GetPrefix
	GetFirstName
	GetMiddleName
	GetLastName
	GetSuffix
	GetGender
	GetPrefix2
	GetFirstName2
	GetMiddleName2
	GetLastName2
	GetSuffix2
	GetGender2
	GetSalutation

	Modifying Settings for Name Object

