

MatchUp Object

Reference Guide
Melissa Data Corporation

Copyright

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part
of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Melissa Data Corporation.
This document and the software it describes are furnished under a license agreement, and may be
used or copied only in accordance with the terms of the license agreement.

Copyright © 2013 by Melissa Data Corporation. All rights reserved.

Information in this document is subject to change without notice. Melissa Data Corporation
assumes no responsibility or liability for any errors, omissions, or inaccuracies that may appear in this
document.

Trademarks

MatchUp Object is a trademark of Melissa Data Corp. Windows is a registered trademark of
Microsoft Corp.

All other brands and products are trademarks of their respective holder(s).

Melissa Data Corporation

22382 Avenida Empresa
Rancho Santa Margarita, CA 92688-2112

Phone: 1-800-MELISSA (1-800-635-4772)
Fax: 949-589-5211

E-mail: info@MelissaData.com
Internet: www.MelissaData.com

For the most recent version of this document, visit
http://www.melissadata.com/tech/matchup-object.htm

Document Code: DQTAPIMURG
Revision Number: 04102013.09

i

Dear Developer,

I would like to take this opportunity to introduce you to Melissa Data Corp. Founded in
1985, Melissa Data provides data quality solutions with emphasis on address and phone
verification, postal encoding, and data enhancements.

We are a leading provider of cost-effective solutions for achieving the highest level of data
quality for lifetime value. A powerful line of software, databases, components, and services
afford our customers the flexibility to cleanse and update contact information using almost
any language, platform, and media for point-of-entry or batch processing.

This manual will guide you through the properties and methods of our easy-to-use
programming tools. Your feedback is important to me, so please don't hesitate to email
your comments or suggestions to Ray@MelissaData.com.

I look forward to hearing from you.

Best Wishes,

Raymond F. Melissa

President/CEO

Table of Contents MatchUp Object
Table of Contents

Introduction to MatchUp Object . 1

MatchUp Object Interfaces . 2

Key Concepts . 3

Entering Your MatchUp Object License . 4

MatchCode List Interface . 5

Matchcode List Interface Functions . 5

Matchcodes and the
Matchcode Editor . 8

Matchcodes . 8

Component Combinations . 14

Blank Field Matching . 16

Matchcode Mapping . 19

Optimizing Matchcodes . 23

Other Uses for Swap Matching . 28

Using MatchUp Object
with Non-U.S. Addresses . 29

The Matchcode Editor . 29

Starting the Matchcode Editor . 29

The Matchcode Editor Interface . 30

Read/Write Deduping . 37

Read/Write Order of Operations . 38

Read/Write Deduping Functions . 42

Initialize the Read/Write Interface . 44
ii

Reference Guide Table of Contents
Map Database Fields . 51

Read Data and Build the Match Key . 53

Process Records . 56

Retrieve Dupe Data for Each Record . 56

Incremental Deduping . 62

Incremental Order of Operations . 63

Using the Transaction Functions . 66

Incremental Deduping Functions . 67

Initialize the Incremental Interface . 69

Map Database Fields . 76

Read Data and Build the Match Key . 78

Compare Record to Database . 80

Add New Record to Key File . 85

Transaction Methods . 85

Hybrid Deduping . 89

Clustering . 89

Key Maintenance . 89

Hybrid Order of Operations . 90

Hybrid Deduping Functions . 93

Initialize the Hybrid Interface . 94

Map Database Fields and Build Keys . 101

Build the Match Keys . 102

Compare Records . 104

Matchcode Interface . 108

Order of Operations for
Creating Matchcodes . 108

Order of Operations
for Reading Matchcodes . 111
iii

Table of Contents MatchUp Object
Matchcode Mapping Information . 115

Matchcode Interface Functions . 116

Initialize MatchUp Object . 118

Create a New Matchcode . 120

Retrieve Existing Matchcodes . 121

General Matchcode Properties . 122

Read Matchcode
Component Information . 123

Get Mapping Information . 124

Change Matchcode Component Settings . 126

Read Matchcode Component Settings . 134

Add, Modify or Delete
Matchcode Components . 142

Save Changes to the Matchcode File . 145

Appendix . 147

Enumerations & International Deduping . 147

Enumerations . 147

International Deduping Considerations . 151
iv

Reference Guide Introduction to MatchUp Object
Introduction to MatchUp Object

MatchUp Object is an extremely fast and powerful programmer's tool that can be
integrated into custom applications to eliminate duplicate records. Because merge/purge
and data quality initiatives go hand in hand, the powerful features of this tool fulfill the
needs of many companies. Reducing printing costs, increasing response rates, maintaining
an efficient database, and achieving better quality data are just some of the many benefits
of the merge/purge process.

MatchUp Object allows developers to customize exactly how to merge and purge data to
suit their business needs. This gives people the flexibility to integrate MatchUp at
different points of their processes, from point of entry to batch processing on the back
end.

MatchUp Object can find matches in any combination of over 35 different components
— from common ones like address, city, state, ZIP™, name, and phone — to less-
common elements, such as email address, company, gender, and social security number.
Developers can even specify their own custom components. Each set of rules for matching
is referred to as a matchcode, and a matchcode can apply up to 16 rules at a time. These
rules are specified as combinations of components. A commonly used combination would
be {Last Name + Street # + Street Name + ZIP Code™}, while another combination in
the same matchcode would substitute PO Box™ for Street # and Street Name. With these
options, the number of potential matching rules is limitless.

MatchUp Object is a very sophisticated tool. If record 1 and 3 match with combination #1
in a matchcode, and record 2 and 3 match using combination #2- MatchUp Object will
use inferred matching and put records 1, 2, and 3 into the same group. It can split address,
city/state/ZIP and name fields on the fly, as well as recognize phonemes like "ph" and
"sh," nicknames (Liz, Beth, Betty, Elizabeth), and alternate spellings of names (Gene,
Jean, Jeanne).

MatchUp Object can also handle nearly-exact strings of characters, such as "Lewis" vs.
"Ewis," and "Palacino" vs. "Al Pacino" as well as initials such as "John Smith" to "J
Smith." These are just a few examples of the powerful matching algorithms at your
disposal: Exact Match; Phonetic; Soundex; Containment; Frequency; Frequency Near;
Fast Near; Accurate Near; Vowels Only; Consonants Only; Alphas Only; and Numerics
Only.
1

Introduction to MatchUp Object MatchUp Object
Speed also is an important feature of MatchUp Object. It can process an average of 10 to
50 million records per hour. MatchUp Object includes a 64-bit version to take advantage
of newer processors and operating systems. The COM and .NET version of MatchUp
Object eases integration with Microsoft languages.

MatchUp Object Features & Benefits
• Fast processing, about 10-50 million records per hour

• Extremely flexible and customizable

• 22 powerful matching algorithms

• Split name, address, and city/state/ZIP fields on the fly

• Easy to learn and use

• Sample Code provided in C#, VB.NET, C++, FoxPro, Java, SQL Server

• Free tech support

MatchUp Object Interfaces
This API provides the developer with three different interfaces, or deduping methods,
allowing for maximum flexibility in selecting the best method for the application.

The Read/Write Deduper
The Read/Write Deduper checks an entire list of records against itself, flagging unique
records and duplicates. This deduper is best for checking existing databases and purging
duplicate data.

Detailed information on using the Read/Write deduper begins on page 37.

The Incremental Deduper
The incremental deduper checks a single record against a persistent historical key file.
This enables an application to field incoming records, such as from a website or a
customer service system, easily detect duplicate records, pointing the application to the
original unique record.

Detailed information on using the Incremental deduper begins on page 62.

The Hybrid Deduper
The Hybrid Deduper allows greater flexibility in customizing the deduping process. This
is done by turning the storage of the matchkeys to the developer. Through this you have
the ability to select clusters of records to compare against the incoming record.

Detailed information on using the Hybrid deduper begins on page 89.
2

Reference Guide Introduction to MatchUp Object
Key Concepts
The following concepts are essential to understanding the logic behind how MatchUp
Object functions and successfully integrating the product into applications.

Match Keys
Match Keys are string tokens that represent a database record. They contain only enough
information necessary to determine a record’s unique or duplicate status.

Because they only contain a reduced portion of the data in the actual record, MatchUp
Object is able to use these keys more efficiently than if it had to compare the complete
record against every other record in the database.

Clustering
Once a matchcode key is generated for a given record, it can be compared to the keys of
other records. Ideally, every record’s key would be compared to every other record's key.
This, however, is not practical in all but very trivial applications because the number of
comparisons grows geometrically with the number of records processed. For example, a
record set of 100 records requires 4,950 comparisons (99 + 98 +...). A larger set of 10,000
records requires 49,995,000 comparisons (9,999 + 9,998 +...). Large record sets would take
prohibitive amounts of time to process.

So, the developers of MatchUp Object made the assumption that in order for two
matchcode keys to be considered matching, there must be something in the keys that must
match exactly. In many cases, this will be all or part of the ZIP/Postal Code. So what
MatchUp Object does is only compare records that are (in this example) in the same ZIP
or Postal Code. On the average (in the US using 5-digit ZIP codes), this will cut the
average number of comparisons per record by a factor of thousands.

This concept is known as “break grouping,” “clustering,” “partitioning,” or “neighborhood
sorting.” It is very likely that most, if not all other deduping programs have used some
form of clustering method.

Here is an example set of matchcode keys using ZIP/Postal Code (5 characters), Last
Name(4), First Name(2), Street Number(3), Street Name(5):

02346BERNMA49 GARD

02346BERNMA49 GARD

02357STARBR18 DAME

02357MILLLI123MAIN

03212STARMA18 DAME
3

Introduction to MatchUp Object MatchUp Object
When the deduping engine encounters this set of matchcode keys, it compares all the keys
in “02346” (2 keys), then “02357” (2 keys), and finally “03212” (1 key). For this small set,
10 comparisons are turned into 2.

In reality, MatchUp Object’s clustering engine is a bit more complicated than this, but
this description will aid in understanding its mechanics.

The second deduping engine removes the first component restrictions, allowing the user
to create matching strategies with rule sets completely independent of each other. This
eliminates having to run multiple passes, as was the case with previous versions.

Matchcodes
Matchcodes are sets of rules that MatchUp Object uses to determine how match keys are
constructed and how much of the key is used for clustering.

A detailed explanation of matchcodes, as well as how to create and edit them using the
Matchcode Editor application, begins on page 8.

Entering Your MatchUp Object License
The license string is a software key that unlocks the functionality of the component.
Without this key, the object does not function. You set the license string using an
environment variable called MD_LICENSE. If you are just trying out MatchUp Object
and have a demo license, you can use the environment variable MD_LICENSE_DEMO
for this purpose. This avoids conflicts or confusion if you already have active subscriptions
to other Melissa Data object products.

In earlier versions of MatchUp Object, you would set this value with a call to the
SetLicenseString function. Using an environment variable makes it much easier to update
the license string without having to edit and re-compile the application.

It used to be necessary, even when employing an environment variable, to call the
SetLicenseString function without passing the license string value. This is no longer true.
MatchUp Object will still recognize the SetLicenseString function, but you should
eventually remove any reference to it from your code.

Windows
Windows users can set environment variables by doing the following:

1. Select Start > Settings, and then click Control Panel.

2. Double-click System, and then click the Advanced tab.

3. Click Environment Variables, and then select either System Variables or Variables
for the user X.
4

Reference Guide Introduction to MatchUp Object
4. Click New.

5. Enter “MD_LICENSE” in the Variable Name box.

6. Enter the license string in the Variable Value box, and then click OK.

Please remember that these settings take effect only upon start of the program. It may be
necessary to quit and restart the application to incorporate the changes.

Linux/Solaris/HP-UX/AIX
Unix-based OS users can simply set the license string via the following (use the actual
license string, instead):

export MD_LICENSE=A1B2C3D4E5

If this setting is placed in the profile, remember to restart the shell.

MatchUp Object also used to employ its own environment variable,
mdMatchUp_LICENSE. The MD_LICENSE variable is shared across the entire
Melissa Data product line of programming tools. MatchUp Object will still use the old
license variable for the time being, but you should transition to using MD_LICENSE as
soon as possible.

MatchCode List Interface
The Matchcode Editor for Windows handles the task of creating and modifying
matchcodes for many situations. The editor application will also run on a Linux system
under WINE.

However, because MatchUp Object works across multiple platforms and not all users will
have access to a Windows emulator, MatchUp Object also includes this MatchCode List
interface which allows the developer to programmatically retrieve the list of available
matchcodes in the MatchUp Object matchcode database.

Matchcode List Interface Functions
Initializing the Matchcode List Interface is simpler than for the other interfaces, since no
license string is required.
5

Introduction to MatchUp Object MatchUp Object
SetPathToMatchUpFiles()
String value. This function accepts a string value indicating the file path to the folder
containing the MatchUp Object files.

To provide maximum compatibility with Windows, three files are installed in your
‘Common App Data’ directory. For Windows Vista and Windows 7 the default location is
“C:\ProgramData\MelissaDATA\MatchUp.” For Windows XP the default location is
“C:\Documents and Settings\All Users\Application Data\Melissa DATA\MatchUp.”
The location of this directory can be changed by users so please note this, as it can often be
the source of issues when running the samples/demos.

InitializeDataFiles()
The InitializeDataFiles method opens the needed data files and prepares the MatchCode
List Interface for use.

Syntax

mcList->SetPathToMatchUpFiles(StringPathValue);

C

mdMUMatchcodeListSetPathToMatchUpFiles(mdMCList, char*);

COM

mcList.PathToMatchUpFiles = StringPathValue

Syntax

ProgramStatus = mcList->InitializeDataFiles()

C

ProgramStatus =
mdMUMatchcodeListInitializeDataFiles(mdMCList)

COM+/.NET

ProgramStatus = mcList.InitializeDataFiles()
6

Reference Guide Introduction to MatchUp Object
GetInitializeErrorString()
Returns a descriptive string to describe the error from the InitializeDataFiles function
when attempting to initialize the interface and retrieve the matchcode list.

GetMatchcodeCount()
Retrieves the number of matchcodes in the mdmatchup.mc database. The matchcode
count allows you to programmatically create a loop using the returned count as the
number of iterations required to retrieve all the present matchcode names.

GetMatchcodeName()
Getmatchcodename can be called programmatically within a loop using the returned
GetMatchcodeCount as the number of iterations required to retrieve all of the matchcode
names in the current mdmatchup.mc database.

Syntax

StringValue = mcList->GetInitializeErrorString()

C

StringValue =
mdMUMatchcodeListGetInitializeErrorString(mdMCList)

COM+/.NET

StringValue = mcList.GetInitializeErrorString()

Syntax

integer = mcList->GetMatchcodeCount()

C

integer = mdMUMatchcodeListGetMatchcodeCount(mdMCList)

COM+/.NET

integer = mcList.MatchcodeCount

Syntax

StringValue = mcList->GetMatchcodeName(int)

C

StringValue = mdMUMatchcodeListGetMatchcodeName(mdMCList,
int)

COM+/.NET

StringValue = mcList.GetMatchcodeName(int)
7

Matchcodes and the Matchcode Editor MatchUp Object
Matchcodes and the
Matchcode Editor

The first part of this chapter details the theory and practice of matchcodes. For
information on the Matchcode Editor application, see the Matchcode Editor subsection.

Matchcodes
Matchcodes are sets of rules that tell MatchUp Object which data fields to consider when
determining if two records are duplicates. MatchUp Object uses the matchcode to
construct a “match key,” a simplified string of characters that represents the information
within the record, enough to determine if the given record is unique or a duplicate.

Matchcode Components
Each matchcode consists of one or more components which are specific data types that
enable a developer to tell MatchUp Object which fields to use by programmatically
mapping the fields in the real database to these data types.

The matchcode component should match the data type that MatchUp Object needs to
build the match key, not necessarily the format found in the database. In other words, if
the database contains full names (first and last) but only last names are needed for
deduping, the matchcode would use the last name component. At the programming stage,
where fields are mapped to specific components, the full name field would be mapped to
the last name component. MatchUp Object is smart enough to parse the name and use
only the information it needs.

The following table lists all of the available matchcode components (Data Types) in
MatchUp Object.

Component Description

Prefix Prefix of a personal name (Mr, Mrs, Ms, Dr)

First Name A first name

Middle Name A middle name
8

Reference Guide Matchcodes and the Matchcode Editor
Last Name A last name

Suffix A suffix from a personal name

Gender Male/Female/Neutral

First/Nickname A representative nickname for a first name

Middle/Nickname A representative nickname for a middle name

Department/Title A title and/or department name1

Company A company name

Company Acronym A company's acronym2

Street Number The street number from an address line3

Street Pre-Directional “South” in “3 South Main St”

Street Name The street name from an address line

Street Suffix An address suffix (St, Ave, Blvd)

Street Post-Directional “North” in “3 Main St North”

PO Box PO Boxes also include Farm Routes, Rural Routes, etc.

Street Secondary Apartments, floors, rooms, etc.

Address A single unparsed address line4

City A city name. ZIP or Postal code is usually more accurate

State/Province A state or province name

Zip9 A full ZIP + 4® code (9 digits)5

Zip5 The ZIP Code (5 digits)

Zip4 The +4 extension of a ZIP + 4 code (4 digits)

Postal Code (Canada) A Canadian Postal Code

City (UK) A city in the United Kingdom

County (UK) A county in the United Kingdom

Postcode (UK) A United Kingdom Postcode

Component Description
9

Matchcodes and the Matchcode Editor MatchUp Object
1. Company, Company Acronym, Department/Title — Frequently these components don't match

exactly because of ‘noise words’ such as “the,” “and,” “agency,” and so on. MatchUp strips these

words from these components.
2. Company Acronym — MatchUp Object converts any multi-word company name into an acronym

(for example, “International Business Machines” is squeezed into “IBM”). Single-word company

names are left as they are. This conversion is done after noise words are removed.
3. Street Address Components — The seven street address components (Street Number,

Street Pre-Directional, Street Name, Street Suffix, Street Post-Directional, PO Box, Street

Secondary) are obtained by splitting up to three address lines. Note that PO Box and/or Street
Secondary do not have to appear on their own line, or in a particular field. MatchUp's proprietary

“street smart” splitter does all of the work.

4. Full Address — When using the Full Address component, you are at the mercy of every little
deviation in data entry. Because MatchUp Object’s street splitter is so powerful, it is preferable to

use street address components instead of the Full Address in nearly all cases. The only exception

may be when processing foreign addresses that don’t conform very well to US, Canadian or UK
addressing formats. This is discussed in more detail starting on page 151.

5. Zip9, Zip5, Zip4, Canadian Postal Code — MatchUp Object removes dashes and spaces from

ZIP codes. When processing a mix of Canadian Postal Codes and US ZIP codes, use the Zip9
component.

6. Phone Number — MatchUp Object removes non-numeric characters from phone numbers.

Leading ‘1-’ and trailing extensions are stripped if present. Numbers lacking an area code are right
justified so that the local dialing code and number are aligned with numbers having area codes. If a

data table often has missing or inaccurate area codes (i.e., after a recent area code split), start at the

4th position of the phone number component. Do not use the right most 7 positions, as badly
formatted extensions can sometimes cause the phone number to get coded improperly.

7. E-Mail Address — MatchUp Object removes illegal characters from e-mail addresses.

Incomplete, changed, and commonly misspelled domain names are corrected using the Email
Address data table.

Country A country

Phone/Fax A phone number6

E-Mail Address An e-mail address7

Credit Card Number A credit card number

Date A date8

Numeric A numeric field9

Proximity Allows you to specify a maximum distance in miles between records

in which a match will be possible.10

General Any general information. ID, birthday, SSN, etc.

Component Description
10

Reference Guide Matchcodes and the Matchcode Editor
8. Date — MatchUp Object allows you to specify a number of days for which a match will be possible
if the records being compared fall within the set number of days apart.

9. Numeric — This allows you to specify an integer number for which a match will be possible if the

record’s unit difference falls within the set number.
10.Proximity — The proximity component requires you to map in Latitude / Longitude coordinates

(Not determined by MatchUp. Can be determined by a product such as GeoCoder or Contact

Verify) allowing you to match addresses within a maximum distance setting for this component.

Matchcode Component Properties
The matchcode components tell MatchUp Object which data types to use for creating the
match key. The component properties tell MatchUp Object how much of the data to use
and what parts.

Often, especially for potentially long fields like personal names and city or street names,
MatchUp Object doesn’t need the full contents of the field to determine if the field is a
duplicate of another. Only ten characters or so will often be enough.

In another example, a database might include the area code and the phone number in
some records and just the local number in others. By only considering seven characters of
the field starting at position four, MatchUp Object has a better chance of detecting a
duplicate.

1. Data Type — See the previous table starting on page 8.

2. Label — This is a line of text that describes the component. Not all fields allow the
label to be edited. This is most useful for clarifying the contents of General fields that
don’t fit any of the other component types.

3. Size — This is the maximum number of characters from the field that MatchUp
Object will use to build the match key. Sizing is done after all other properties are
applied.

4. Start — This property determines where MatchUp Object begins counting when
applying the Size property.

• Left — Starts from the first character of the field. This is the most commonly used
option.

• Right — Starts from the last character of the field. In other words, if the data
included a phone number of “949-589-5200” and the size was 7, MatchUp Object
would use “5895200” for the match key.

• Position — Starts from a specific position within the field.

5. Fuzzy — Fuzzy settings allow for matching of non-exact components. These options
are mutually exclusive, so you can only select one at a time.
11

Matchcodes and the Matchcode Editor MatchUp Object
• Phonetex — (pronounced “Fo-NEH-tex”) An auditory matching algorithm. It
works best in matching words that sound alike but are spelled differently. It is an
improvement over the Soundex algorithm described below.

• Soundex — An auditory matching algorithm originally developed by the
Department of Immigration in 1917 and later adopted by the USPS. Although the
Phonetex algorithm is measurably superior, the Soundex algorithm is presented for
users who need to create a matchcode that emulates one from another application.

• Containment — Matches when one record's component is contained in another
record. For example, “Smith” is contained in “Smithfield.”

• Frequency — Matches the characters in one record’s component to the characters
in another without any regard to the sequence. For example “abcdef” would match
”badcfe.”

• Fast Near — A typographical matching algorithm. It works best in matching
words that don’t match because of a few typographical errors. Exactly how many
errors is specified on a scale from 1 to 4 (1 being the tightest). The Fast Near
algorithm is a faster approximation of the Accurate Near algorithm described
below. The trade-off for speed is accuracy; sometimes Fast Near will find false
matches or miss true matches.

• Accurate Near — An implementation of the Levenshtein algorithm. It is a
typographical matching algorithm. The Accurate Near algorithm produces better
results than the Fast Near algorithm, but is slower.

• Frequency Near — Similar to Frequency matching except that you specify how
many characters may be different between components.

• Vowels Only — Only vowels will be compared. Consonants will be removed.

• Consonants Only — Only consonants will be compared. Vowels will be removed.

• Alphas Only — Only alphabetic characters will be compared.

• Numerics Only — Only numeric characters will be compared. Decimals and signs
are considered numeric.

• MD Keyboard — An algorithm developed by Melissa Data which counts
keyboarding mis-hits with a weighted penalty based on the distance of the mis-hit
and assigns a percentage of similarity between the compared strings.

6. Fuzzy Advanced —Please research the definitions of the following advanced
algorithms before implementing in a matchcode.

• Jaro — Gathers common characters (in order) between the two strings, then counts
transpositions between the two common strings.

• Jaro-Winkler — Just like Jaro, but gives added weight for matching characters at
the start of the string (up to 4 characters).
12

Reference Guide Matchcodes and the Matchcode Editor
• n-Gram — Counts the number of common sub-strings (grams) between the two
strings. Substring size ‘N’, is currently defaulted as 2 in MatchUp.

• Needleman-Wunch — Similar to Accurate Near, except that inserts/deletes aren’t
weighted as heavily and as compensation for keyboarding mis-hits, not all character
substitutions are weighted equally.

• Smith-Waterman-Gotoh — Builds on Needleman-Wunch, but gives a non-linear
penalty for deletions. This effectively adds the ‘understanding’ that the keyboarder
may have tried to abbreviate one of the words.

• Dice’s Coefficient — Like Jaro, Dice counts matching n-Grams (discarding
duplicate n-Grams).

• Jaccard Similarity Coefficient — Very similar to Dice’s Coefficient with a slightly
different calculation.

• Overlap Coefficient — Again, very similar to Dice’s Coefficient with a slightly
different calculation. String similarity algorithm based on a substring calculation.

• Longest Common Substring — Finds the longest common substring between the
two strings.

• Double MetaPhone — Performs 2 different Phonetex-style transformations.
Returns a value dependant on how many of the transformations match (ie, 1 versus
1, 1 versus 2, 2 versus 1, 2 versus 2).

7. Distance — This field is context sensitive, depending on the Data Type and Fuzzy
algorithm.

• Data Type

•Proximity - Distance in miles. Range: 0-4000

•Numeric - Integer number.

•Date - Number of days.

• Fuzzy

•Fast Near - Number of typographical errors. Range: Loose(1) - Tight(4)

•Accurate Near - Number of typographical errors. Range: Loose(1) -Tight(4)

The following use a percentage range of 0-100%, indicating the minimum percentage
of similarity which will return a match between two strings.

•N-Gram

•Jaro

•Jaro-Winkler

•LCS

•Needleman-Wunch

•MD Keyboard
13

Matchcodes and the Matchcode Editor MatchUp Object
•Smith-Waterman-Gotoh

•Dice’s Coefficient

•Jaccard Similarity Coefficient

•Overlap Coefficient

•Double MetaPhone

8. Short/Empty Settings — These settings control matching between incomplete or
empty fields. They are not mutually exclusive, meaning that any combination of these
settings may be selected.

• Initial Only — Will match a full word to an initial (for example, “J” and “John”).

• One Blank Field — Will match a full word to no data (for example, “John” and “”).

• Both Blank Fields — Match this component if both records contain no data. This
is a very important concept in creating matchcodes. See Blank Field Matching later
in this chapter for more information.

9. Swap — Swap matching is the ability to compare one component to another
component. For example, if you were to swap match a First Name component and a
Last Name component, you could match “John Smith” to “Smith John.” Swap
matching is always defined for a pair of components. MatchUp allows you to specify
up to 8 swap pairs (named “Pair A” through “Pair H”). It is strongly recommended
that the other properties of both member components are identical. For more
information on using Swap matching see “Other Uses for Swap Matching” on
page 28.

Component Combinations
Every matchcode is composed of one or more combination of components. These
columns represent different combinations of components which may detect a match
between two records. A match found using any one of the combinations in a matchcode is
considered a match. Programmers may think in terms of a series of OR conditions.
Satisfying any one of them is considered a positive result.

MatchUp allows up to 16 different combinations of components per matchcode.

A good example of combinations would be a matchcode designed to catch last names as
well as either street addresses or Post Office Box addresses.

• Condition #1: ZIP/PC, Last Name, Street Number, Street Name

• Condition #2: ZIP/PC, Last Name, PO Box
14

Reference Guide Matchcodes and the Matchcode Editor
Such a matchcode might look like this:

Columns 3 through 16 have been omitted for the sake of clarity. The trick to
understanding this table is to look at the vertical columns of X’s. For example, looking at
column 1, there are X’s in ZIP/PC, Last Name, Street #, and Street Name, indicating the
goal of condition #1 exactly. In column 2 are X’s in ZIP/PC, Last Name, and PO Box,
matching condition #2.

For a more advanced example:

This matchcode may produce matches if any one of following 4 conditions returns true:

• Condition #1: ZIP/PC, Last Name, Street Number, Street Name

• Condition #2: ZIP/PC, Last Name, PO Box

• Condition #3: ZIP/PC, Company, Street Number, Street Name

• Condition #4: ZIP/PC, Company, PO Box

This matchcode could be used on a list containing a mixture of both personal and
company names and either street or PO Box addresses.

Component Size 1 2

ZIP/PC 5 X X

Last Name 5 X X

Street # 4 X

Street Name 4 X

PO Box 10 X

Component Size 1 2 3 4

ZIP/PC 5 X X X X

Last Name 5 X X

Company 10 X X

Street # 4 X X

Street Name 4 X X

PO Box 10 X X
15

Matchcodes and the Matchcode Editor MatchUp Object
First Component Restrictions
MatchUp now has two deduping engines. The object will determine if one is either
necessary or more efficient, and select that engine for usage. In some cases, processing will
be faster if the traditional ReadWrite engine is selected because of First Component
properties. These are:

1. It must appear in every combination.

2. It cannot use the following types of Fuzzy matching: Containment; Frequency;
Fast Near; Frequency Near; Accurate Near. All others are allowed.

3. It cannot use Initial Only matching.

4. It cannot use One Blank Field matching.

5. It cannot use Swap Matching.

In other situations, you may have combinations where there are no common components.
An example would be:

• Condition #1: ZIP/PC, Street Number, Street Name

• Condition #2: ZIP/PC, PO Box

• Condition #3: Proximity

In this case, MatchUp would determine that it needs to use its Intersecting Logic. This
engine is required because there are no common components. Speed benchmarks may be
surprisingly similar, but may in fact return more duplicates.

Blank Field Matching
This needs a special discussion, as its importance is often overlooked. As discussed above,
if this property is on, then the absence of data in both records would indicate a match. If
this property is off, then two records with missing data, but matching in every other way,
will not match.

The following example demonstrates when Blank set to ON allows a match on a

non-critical component. Setting Blank to OFF is recommended for a critical component.

Component Size Blank 1 2

ZIP/PC 5 Yes X X

Last Name 5 Yes X X

Street # 4 Yes X

Street Name 4 Yes X
16

Reference Guide Matchcodes and the Matchcode Editor
As described above, this produces the following combinations:

• Condition #1: ZIP/PC, Last Name, Street Number, Street Name

• Condition #2: ZIP/PC, Last Name, PO Box

For this example, take the following records:

Name: Joe Smith Suzi Smith

Address: 326 Main Street 405 Main St

City/State/PC: Pembroke, MA 02066 Pembroke, MA 02066

The following matchcode keys would be generated:

According to these matchcode keys, it is clear that these two records do not satisfy
condition #1. But because blank field matching is selected, they do satisfy condition #2.
The Zip/PC, Last Name, and PO Box are exactly the same. Therefore, the two records do
match.

Obviously, this is not the correct result. Making one change to the matchcode:

The same comparison is done for combination #2, but the match is disallowed this time
because the matchcode now indicates that missing (blank) information is not allowed to
figure in the matching condition.

Looking at another example (using the same matchcode):

PO Box 10 Yes X

Cond# Zip/PC Last Name Street # Street Name PO Box

1 02066 SMITH 326 MAIN

2 02066 SMITH 405 MAIN

Component Size Blank 1 2

ZIP/PC 5 Yes X X

Last Name 5 Yes X X

Street # 4 Yes X

Street Name 4 Yes X

PO Box 10 No X

Component Size Blank 1 2
17

Matchcodes and the Matchcode Editor MatchUp Object
Name: Joe Smith Suzi Smith

Address: PO Box 123 PO Box 456

City/State/PC: Pembroke, MA 02066 Pembroke, MA 02066

This pairing produces the following matchcode keys:

This record has the same problem as before, but this time combination #1 is the cause. An

even better matchcode would be:

This is one matchcode that works well. There is one more possible tweak, however: turn
on Both Blank Fields for the Street # component. Occasionally, MatchUp Object may
encounter records such as:

Name: Joe Notarangello Suzi Notarangello

Address: Oceanfront Estates Oceanfront Est.

City/State/PC: Pembroke, MA 02066 Pembroke, MA 02066

This reflects a trend in up-scale neighborhoods, where neither street address has a Street #
component, though it is very likely these records should match.

So this new, improved matchcode will account for these situations:

Cond# Zip/PC Last Name Street # Street Name PO Box

1 02066 SMITH 123

2 02066 SMITH 456

Component Size Blank 1 2

ZIP/PC 5 Yes X X

Last Name 5 Yes X X

Street # 4 No X

Street Name 4 No X

PO Box 10 No X

Component Size Blank 1 2

ZIP/PC 5 Yes X X

Last Name 5 Yes X X
18

Reference Guide Matchcodes and the Matchcode Editor
Matchcode Mapping
Matchcodes deal with the abstract. The components in a matchcode represent specific
types of data, but they aren't directly linked to the fields in databases. Mapping creates the
link between the data and the matchcode.

For example, take the following matchcode:

Add a database which contains the following fields:

NAME Contains full names (“Mr. John Smith”).

COMPANY Contains company names (“Melissa Data”).

ADD1 Contains first (primary) address line (“22382 Avenida Empresa”).

ADD2 Contains second (secondary) address line (“Suite 34”).

CSZ Contains City/State/Zip (“Rancho Santa Margarita, CA 92688”).

An application must create a link between a database’s fields (Name, Company, Add1,
Add2 and CSZ) and the matchcode components (Zip5, Last Name, First Name,
Company).

With the example above, it may appear that the application will have to contain extensive
splitting routines. This is not the case. All that is necessary is to tell MatchUp what type of
data is in a specific field and the format of that data.

Street # 4 Yes X

Street Name 4 No X

PO Box 10 No X

Component Size Fuzzy 1

Zip5 5 No X

Last Name 5 No X

First Name 5 No X

Company 10 No X

Component Size Blank 1 2
19

Matchcodes and the Matchcode Editor MatchUp Object
In the example above, an application would use the following matchcode mapping:

This mapping tells MatchUp that the 5-digit ZIP Code information is in a field named
“CSZ” which is described as a field containing city, state, and ZIP Code information. The
Last Name can be found in a field called “NAME” and is described as a full name field
(which is a full name sequenced: Pre, FN, MN, LN, Suf). A complete list of possible
matchcode mappings can be found on page 148.

Matchcode mappings follow five rules:

1. For every Matchcode Component, the application must specify a mapping. The
only exception is described in rule 2.

2. Actual Address components names (such as Street Number,
Street Pre-Directional, Street Name, Street Suffix, Street Post-Directional, PO
Box, and Street Secondary) are not listed for mapping purposes. Instead, the names
Address Line 1, Address Line 2, and Address Line 3 are used. The example below
used four address components in the matchcode (Street #, Street Name, Street
Secondary, PO Box). However, it only used two address lines.

3. If a matchcode uses any address components, Address Lines 1-3 will be listed after
all other components regardless of where the address component appears in the
matchcode. In the following example, the address components are listed before
company in the matchcode, but Address Lines 1-3 are listed at the end (after
company).

4. If a matchcode uses address components, Address Lines 1-3 will require at least
one line to be mapped, but not all. If a database only has one address field, an
application will only need to map Address 1 to that field. All other components
must be mapped.

5. Address Lines should be mapped from the top down (Address Line 1, then 2, then
3).

Matchcode Component Database Field Matchcode Mapping

Zip5 CSZ CityStZip

Last Name NAME FullName

First Name NAME FullName

Company COMPANY Company
20

Reference Guide Matchcodes and the Matchcode Editor
Enhancing the matchcode in the previous example:

Again, MatchUp doesn’t use the individual address components. They are replaced with
Address 1, Address 2, and Address 3. So, the application would use the following

Matchcode Mapping:

Note on Rule #1:
If a database does not contain a field for information called for by a component in a
matchcode, such as company field in the above example, then that matchcode should not
be used to dedupe that database.

Use a different matchcode or modify an existing matchcode, as outlined later in this
chapter.

Component Size Fuzzy 1 2

Zip5 5 No X X

Last Name 5 No X X

First Name 5 No X X

Street # 5 No X

Street Name 5 No X

Street Secondary 12 No X

PO Box 10 No X

Company 10 No X X

Matchcode Component Database Field Matchcode Mapping

Zip9 CSZ CityStZip

Last Name NAME FullName

First Name NAME FullName

Company COMPANY Company

Address Line 1 ADD1 Address

Address Line 2 ADD2 Address

Address Line 3 (none)
21

Matchcodes and the Matchcode Editor MatchUp Object
However, if a matchcode calls for last name, for example, and the database only has full
name, then simply map the full name field to the last name and MatchUp Object will
handle parsing the field.

Matchcode Mapping Using the API
All three of the MatchUp Object deduping interfaces (Incremental, Read/Write and
Hybrid) have an AddMapping function. This is used to create mappings for the current
instance of whatever deduper an application is using. For the last example above, call the
function in the following way:

mu->ClearMapping();

mu->AddMapping(mu->CityStZip);

mu->AddMapping(mu->FullName);

mu->AddMapping(mu->FullName);

mu->AddMapping(mu->Company);

mu->AddMapping(mu->Address);

mu->AddMapping(mu->Address);

The value being passed to the function is an enumerated value of the type
MatchcodeMapping.

Note that this code does not tell MatchUp Object anything about the database containing
the data to be deduped. The application handles the data access separately and then passes
the necessary fields to the deduper using the AddField function.

Changing Mappings
It is possible to change mappings in the middle of a session if, for example, an application
has to handle two databases with different data structures. Continuing with the example

from above, assume that the second database has the following structure:

Matchcode Component Database Field Matchcode Mapping

Zip9 CSZ CityStZip

Last Name LAST LastName

First Name FIRST FirstName

Company COMPANY Company

Address Line 1 ADD1 Address

Address Line 2 ADD2 Address
22

Reference Guide Matchcodes and the Matchcode Editor
To use this mapping, the application would first have to call the ClearMappings function
to remove the existing mappings and call the AddMapping function again to configure
the new mapping.

mu->AddMapping(mu->CityStZip);

mu->AddMapping(mu->LastName);

mu->AddMapping(mu->FirstName);

mu->AddMapping(mu->Company);

mu->AddMapping(mu->Address);

mu->AddMapping(mu->Address);

Optimizing Matchcodes
Some matchcodes process much faster than others in spite of the fact that they detect the
same matches. This section will assist in creating the most efficient matchcodes. This
discussion is included so developers can better understand why certain things are done
while optimizing.

Optimizing can make a significant difference in processing speed. 58-hour runs have been
reduced to four hours simply by optimizing the matchcode.

It is important, however, that the developer verifies that a matchcode works in the
intended way before attempting any optimizations. If a matchcode is not functioning
properly, these optimizations will not help, and could quite possibly make the situation
worse.

Component Sequence
As discussed in the previous section, data may process faster if the first component of a
matchcode has certain properties:

• It must be used in every combination.

• It cannot use certain types of Fuzzy Matching: Containment; Frequency; Fast Near;
Frequency Near; or Accurate Near (other types are okay, though).

• It cannot use Initial Only matching.

• It cannot use One Blank Field matching.

• It cannot use Swap matching.

Address Line 3 (none)

Matchcode Component Database Field Matchcode Mapping
23

Matchcodes and the Matchcode Editor MatchUp Object
If the matchcode's second component also follows these conditions, MatchUp Object will
incorporate it into its clustering scheme (see Clustering on page 3 for more information on
clustering). Additional components, if they follow in sequence (third, fourth, and so on),
will be used if they, too, satisfy these conditions. Incorporating a component into a cluster
greatly reduces the number of comparisons MatchUp Object has to perform which, in
turn, speeds up your processing.

This is a simple example of optimization.

As shown here, MatchUp Object will only cluster by ZIP/PC. But note that the last

component satisfies all the conditions listed earlier.

This simple optimization will produce significant improvements in speed. In general, if
your matchcode requires multiple components to be used in all set combinations, place
them before other components.

Fuzzy Algorithms
Fuzzy algorithms fall into two categories: early matching and late matching.

Early matching algorithms are algorithms where a string is transformed into a (usually
shorter) representation and comparisons are performed on this result. In MatchUp, these
transformations are performed during key generation (the BuildKey function in each

Component Size Fuzzy Blank 1 2

ZIP/PC 5 No Yes X X

Street # 5 No Yes X

Street Name 5 No No X

PO Box 10 No No X

Last Name 5 No Yes X X

Component Size Fuzzy Blank 1 2

ZIP/PC 5 No Yes X X

Last Name 5 No Yes X X

Street # 5 No Yes X

Street Name 5 No No X

PO Box 10 No No X
24

Reference Guide Matchcodes and the Matchcode Editor
interface), which means that the early matching algorithms pay a speed penalty once per
record: as each record’s key is built.

Late matching algorithms are actual comparison algorithms. Usually one string is shifted
in one direction or another, and often a matrix of some sort is used to derive a result.
These transformations are performed during key comparison. As a result, late matching
algorithms pay a speed penalty every time a record is compared to another record. This
may happen several hundred times per record.

Obviously, late matching is much slower than early matching. If a particular matchcode is
very slow, changing to a faster fuzzy matching algorithm may improve the speed. Often, a
faster algorithm will give nearly the same results, but it is a good idea to test any such
change before processing live data.

The fuzzy algorithms, ranked from slowest to fastest:

Algorithm Late or Early Speed (10=fastest)

Jaro Late 1

Jaro-Winkler Late 1

n-Gram Late 1

Needleman-Wunch Late 1

Smith-Waterman-Gotoh Late 1

Dice’s Coefficient Late 1

Jaccard Similarity Coefficient Late 1

Overlap Coefficient Late 1

Longest Common Substring Late 1

Double Metaphone Late 1

Accurate Near Late 1

Fast Near Late 3

Containment Late 4

Frequency Near Late 4

Frequency Late 6

Phonetex Early 7

Soundex Early 8
25

Matchcodes and the Matchcode Editor MatchUp Object
The speed values are only rough estimates.

Another benefit of using a faster fuzzy algorithm is that an application may be able to
exploit the component sequence optimization shown earlier. All of the early matching
algorithms satisfy the restrictions for first components.

Unnecessary Components
Components that are not used in any combinations (in other words, they have no X's in
columns 1 through 16) are a sign of poor matchcode design.

Take the following matchcode:

First name is not being used in any combination. Perhaps it was used in a combination
that has since been removed from this matchcode, but it is no longer necessary.

Vowels Only Early 9

Numerics Only Early 9

Consonants Only Early 9

Alphas Only Early 9

Exact N/A 10

Component Size Fuzzy Blank 1 2

ZIP/PC 5 No Yes X X

Last Name 5 No Yes X X

First Name 5 No Yes

Street # 5 No Yes X

Street Name 5 No No X

PO Box 10 No No X

Algorithm Late or Early Speed (10=fastest)
26

Reference Guide Matchcodes and the Matchcode Editor
Unnecessary Combinations

Take the following matchcode:

Here are the four conditions for matching:

There is no match that will be detected by condition #1 that would not be detected by
condition #3. Similarly, matches found by condition #2 will always be found by condition
#4. In other words, condition 3 is a subset of condition 1, and condition 2 is a subset of
condition 4. Subsets are rarely desirable.

So either conditions 1 and 2 aren’t needed or conditions 3 and 4 were a mistake. If
conditions 1 and 2 are eliminated, the First Name component should also be removed, as
it will not be needed.

Component Size Fuzzy Blank 1 2 3 4

ZIP/PC 5 No Yes X X X X

Last Name 5 No Yes X X X X

First Name 5 No Yes X X

Street # 5 No Yes X X

Street Name 5 No No X X

PO Box 10 No No X X

Condition #1: ZIP/PC Last Name First Name Street # Street Name

Condition #2: ZIP/PC Last Name First Name PO Box

Condition #3: ZIP/PC Last Name Street # Street Name

Condition #4: ZIP/PC Last Name PO Box
27

Matchcodes and the Matchcode Editor MatchUp Object
Other Uses for Swap Matching
Swap matching is used to catch matches when two fields are flipped around. The most
common occasion is catching the “John Smith” and “Smith John” records. But there are
other uses:

Comparing Household Records
When there are two or three first or full names per record, a list provider may claim that
every record is always “husband, wife, then children,” but records will read wife then child
and husband):

In the above example, select Either component can match for Swap Pairs A, B, and C.

Comparing up to Three Address Lines
Although the address splitter works well in the US and Canada, some European countries
can cause problems. A typical Euro-Matchcode will not use street split components and
look at three address lines instead. The swap matching ensures that every address line is
compared with every other address line.

Again, select Either component can match for Swap Pairs A, B, and C.
28

Reference Guide Matchcodes and the Matchcode Editor
Don’t always discard the street split component matchcodes because you are working with
a foreign database. Sometimes the street splitter will yield usable results. Therefore, a
combination of approaches will often work.

Using MatchUp Object
with Non-U.S. Addresses
For more information on using MatchUp Object with addresses in Canada, the UK and
other nations, see “International Deduping Considerations” on page 151.

The Matchcode Editor
The Matchcode Editor is a Windows-based application that creates and edits the
matchcode file used by MatchUp Object. This program allows developers to customize
copies of the original matchcodes that ship with MatchUp Object or create new
matchcodes from scratch.

If you have ever used Melissa Data’s MatchUp software for Windows, you will already be
familiar with the functionality of the Matchcode Editor.

Starting the Matchcode Editor
The default installation location for the MatchUpEditor executable is:

C:\Program Files\Melissa DATA\DQT\MatchUp\

To run, specify the location of the mdMatchUp.mc matchcode file as a command-line
parameter (ie, in the program’s shortcut), as in:
29

Matchcodes and the Matchcode Editor MatchUp Object
MatchUpEditor.exe “C:\programdata\Melissa Data\MatchUp”

Or you can alter the shortcut’s “Start in” location so that it starts in the same location as
the mdMatchup.mc file. You can also run it directly from the Start menu, if you chose
that as an installation option.

The Matchcode Editor Interface
The Matchcode Editor screen is divided into three distinct sections: a list of available
matchcodes in the matchcode database; the properties of the selected Matchcode; and a
description of the Matching Rules for the selected matchcode.
30

Reference Guide Matchcodes and the Matchcode Editor
Matchcode Name
The top portion of the screen contains a drop-down menu of all the matchcodes found in
the current matchcode file.

Below this is a Description: section that contains the description for the currently selected
matchcode.

To the right are the Create Matchcode, Remove Matchcode, Copy Matchcode, and
Rename Matchcode buttons with which you can create and modify matchcodes. Copying
a current matchcode is often the best starting point for creating new matchcodes.

To add a new matchcode:
1. Click the Create Matchcode button.

2. Type a name for the new matchcode in the Matchcode Name dialog box and click
OK.

3. The Matchcode editor presents a blank matchcode screen with no components.

4. Begin adding components. Once a Data Type is selected, click anywhere in the
window, or press the Enter key. This will input that data type, and have another
row appear that may be edited.

To remove an existing matchcode:
1. Select the matchcode to be deleted in the Matchcode Name: drop-down menu.

2. Click the Remove Matchcode button.

3. Click Yes in the Remove Matchcode dialog box to confirm the deletion.

To make a copy of an existing matchcode:
1. Select the matchcode to be copied in the Matchcode Name: drop-down menu.

2. Click the Copy Matchcode button.

3. Type a name for the new matchcode in the Matchcode Name dialog box and click
OK.

To rename an existing matchcode:
1. Select the matchcode to be renamed in the Matchcode Name: drop-down menu.

2. Click the Rename Matchcode button.
31

Matchcodes and the Matchcode Editor MatchUp Object
3. Type a new name for the matchcode in the Matchcode Name dialog box and click
OK.

Matchcode List
Below the matchcode name is the Matchcode List section, a list of components used by
the currently selected matchcode.

This list shows the basic settings for each combination.

• Data Type — The type of data used by this component. See the table on page 8 for a
list of all available types.

• Label — (Optional) A description of the data found in this component. Not all com-
ponent types use this field.

• Size — The maximum number of characters from this component to be used by this
matchcode. If the data has fewer characters, it will be padded with spaces.

• Start — Sets where the current matchcode starts counting when selecting characters
to use: the left (beginning); the right (end); a specific character position; or a specific
word.

• Fuzzy — The type of matching to be used on the selected data type.

• Distance — Context sensitive, sets a range for specific data types or fuzzy matching.

• Short/Empty — These settings control matching between incomplete or empty
fields.

• Swap — Swap matching is the ability to compare one component to another compo-
nent.

For more information on the settings on this part of the dialogs, see “Matchcode
Component Properties” on page 11.

Following these fields, to the right side of the list, there is a grid of editable check boxes
that shows the combinations in which component is used.

To add a new component to the matchcode:
1. Click the down arrow to open the drop-down menu named [Select Data Type].

(There will always be a [Select Data Type] below the last defined matchcode
component.)

2. Select the desired data type from the drop-down menu.
32

Reference Guide Matchcodes and the Matchcode Editor
3. The new component is added as the last component in the matchcode.

4. Select the settings for the new component by clicking the field you want to change.
See the sections below for more information on the controls within this dialog.

To remove a component from a matchcode:
1. Click the down arrow to open the drop-down menu of the component to be

deleted.

2. Select [Remove Component] from the top of the list in the drop-down menu.

3. Once selected, click anywhere in the window, or press the Enter key. This will
confirm the removal, and remove the component from the matchcode list.

To change the order of components in a matchcode:
1. Click and drag the name of the component.

2. Drag the component to the new position.

For more information on how combinations of components are used, see “Component
Combinations” on page 14.

Matching Strategies (Fuzzy)
This setting controls what criteria the matchcode will use to determine how to compare
this component of one match key to another match key.

Fuzzy Matching Strategies

• Phonetex • Vowels Only • Needleman-Wunch

• Soundex • Consonants Only • Smith-Waterman-Gotoh

• Containment • Alphas Only • Dice’s Coefficient

• Frequency • Numerics Only • Jaccard Similarity

Coefficient

• Fast Near • Jaro • Overlap Coefficient

• Accurate Near • Jaro-Winkler • Longest Common

Substring

• Frequency Near • n-Gram • Double MetaPhone
33

Matchcodes and the Matchcode Editor MatchUp Object
Short/Empty Settings
This setting controls whether blank or incomplete fields are considered matches to
populated fields or other blank fields. These settings are not exclusive, so two or all three
may be selected at one time.

• Match if both fields are blank — If two records have the same empty component,
that component will be counted as matching.

• Match if one field is blank — Allows matching missing data with the full data. For
example, “Smith” matches “John Smith.” However, two records with the same com-
ponent missing will not match.

• Match initial to full field — Allows matching abbreviated data with the full data. For
example, “J Smith” matches “John Smith.”

Swap Match Pairs
The Swap Match section selects which combination belong to which swap pairs.

Swap Matching allows matching “John Smith” with “Smith John.”

The components must be of the same size and should have the same set of matching
options (for example, one can’t use Phonetex the other SoundEx). Up to eight pairs, A
through H, can be defined.

For more information on using swap pairs, see “Other Uses for Swap Matching” on
page 28.

To configure a swap pair:
1. Click the Swapping... button.

2. The Matchcode Swap Pairs dialog will open.

3. First select the pair tab you desire to edit. Pair A is selected by default.
34

Reference Guide Matchcodes and the Matchcode Editor
4. Select the two components that will be used for this swap pair by selecting them in
their respective drop down menus.

5. Then select the swapping rule:

• Both components must match — The contents of both components must be a match
according to fuzzy matching strategy in use for both components. “John Smith
matches “Smith John” but not “Smith <blank>.”

• Either component can match — At least one of the components must match. “John
Smith matches both “Smith John” and “Smith <blank>.”

6. Click OK.
35

Matchcodes and the Matchcode Editor MatchUp Object
Combinations
Use these check boxes to select which of the 16 possible combinations will use this
component.

It is easier to visualize the effects of these boxes if you look at the list of matchcode
components as well:

It is important to note that each VERTICAL column of check marks designates one
matchcode. For example, the illustration above shows a combination that is made up of 4
matchcodes:

1. Zip5, Last Name, First Name, Street Number, Street Name

2. Zip5, Last Name, First Name, PO Box

3. Zip5, Company, Street Number, Street Name

4. Zip5, Company, PO Box

Matching Rules
This section details the matching rules, depending on your selections under the
Matchcode List.
36

Reference Guide Read/Write Deduping
Read/Write Deduping

Read/Write deduping is usually used for processing entire lists. It works in a manner
similar to the way that the MatchUp software products does. A calling program passes an
entire list to the Read/Write deduping engine one record at a time. When the entire list
has been passed, the calling program tells the API to process the records. Then, the calling
program retrieves each record, along with additional deduplication information, from the
Read/Write deduper.

Read/Write deduping consists of the following steps:

1. One by one, the program sends a series of record data (ZIP/PC, Name, Address,
etc) to the MatchUp API.

2. When completely done (1), the program sends a “process” command to the API.

3. The program retrieves the results for each record with deduplication information.

Order of Output Records
The program will send records in a particular sequence, either in record (raw) order, or
maybe in a more sophisticated manner (by ZIP/PC, record type, and so on). MatchUp
Object will not return the records in the same order. By default, records are output in
cluster order. This order will be loosely based on the matchcode. For example, if the
matchcode has Zip5 as its first component, output records will be more or less sorted by
ZIP Code (but the developer should not count on this). If the application called the
SetGroupSorting function, records in the same dupe group will be adjacent. Otherwise,
duplicate records may or may not be adjacent (though they usually are near each other).

If a certain sequence is important (for example, records ordered in the same sequence they
were input), sort the results after MatchUp Object has processed the data.

Data Lifetime
A Read/Write deduping session is relatively short-lived. Although the actual action of
reading and writing records may take time (hours or days), the process is strictly defined
into three distinct steps. The key file does not persist beyond this point. Because of this,
Read/Write deduping is not usually the choice for ongoing or online processes.
37

Read/Write Deduping MatchUp Object
Record Identity
Because MatchUp Object does not read or write directly to the database, some mechanism
must be provided so that the application can match each record back to the original data
source. The SetUserInfo function allows the application to pass an unique identifier for
each record.

Read/Write Order of Operations
Using the Read/Write deduper is pretty straight forward. This section will outline the
basic steps and then show an example of the programming logic for a typical
implementation of the Read/Write deduper.

1. Initialize the Read/Write deduper.

After creating an instance of the Read/Write deduper, point the object toward its
supporting data file, select a matchcode and key file to use, and initialize these files.

2. Create field mappings.

In order to build a key to be written to the key file, the Read/Write deduper needs
to know which types of data the application will be passing to the deduper and in
what order.

3. Read the records from the database.

Loop through the master database and get the data fields needed to build a key,
according to the mappings defined in step 2.

4. Build a match key for each record.

This consists of passing the actual data to the deduper in the same order used when
creating the field mapping. After passing the necessary fields (usually a small subset
of the fields from each record) via the AddField function, the deduper uses this
information to generate a match key.

5. Write each match key to the key file.

The WriteRecord function stores each match key in a temporary key file.

6. Process the keys.

After building the keys, calling the Process function loops through the keys and
compares them to each other.

7. Loop through the records and read the deduping data for each one.

The ReadRecord function loops through the entire set of deduped records and
allows the application to read information on the record’s duplicate/unique status,
the number of duplicates for each record and the record dupe group.
38

Reference Guide Read/Write Deduping
The following section outlines a common implementation of the Read/Write deduper,
using pseudocode for maximum clarity. Working sample programs in several
programming languages can be found on the MatchUp Object install disc and more can
be downloaded from the MatchUp Object support page on the Melissa Data website.

Step 1: Initialize the Read/Write deduper
After creating an instance of the Read/Write deduper, point the object toward its
supporting data file, select a matchcode and key file to use, and initialize these files.

First, create a new instance of the Read/Write deduper.

SET mu = NEW mdMUReadWrite

In order to successfully initialize this new instance, the application must point it toward its
data files and supply a valid license string.

CALL mu.SetLicenseString with LicenseString

CALL mu.SetPathToMatchUpFiles with PathToMatchUpFiles

Before initialization, the application must specify which matchcode and key file will be
used for the current deduping operation.

CALL mu.SetMatchcodeName with MatchCodeName

CALL mu.SetKeyFile with PathToKeyFile

If all of the above have been set correctly, calling the InitializeDataFiles function should
return a value of ErrorNone. If it does not, call the GetInitializeErrorString function to
determine the reason for the failure to initialize.

CALL mu.InitializeDataFiles RETURNING ProgramStatusResult

IF ProgramStatusResult is not 0 THEN
PRINT "Initialization Error: " + mu.GetInitializeErrorString
EXIT ROUTINE

END IF

If the initialization was successful, the application can call the following functions to
display version and expiration information about the instance of MatchUp Object
currently in use on the local computer.

PRINT "Confirming Initialization: " + mu.GetInitializeErrorString

PRINT "Build Number: " + mu.GetBuildNumber

PRINT "Database Date: " + mu.GetDatabaseDate

PRINT "Database Expiration Date: " + mu.GetDatabaseExpirationDate

PRINT "License Expiration Date: " + mu.GetLicenseExpirationDate
39

Read/Write Deduping MatchUp Object
Step 2: Create field mappings
Field mappings define which types of data the Read/Write deduper is expecting. In this
case, the selected matchcode looks for a five-digit ZIP Code, a first name, a last name and
a street address.

CALL mu.ClearMappings

After clearing any mappings from a previous use of the Read/Write deduper, call the
AddMapping function once for each field being considered.

CALL mu.AddMapping with mu.Zip5 RETURNING mapOK

CALL mu.AddMapping with mu.First RETURNING mapOK

CALL mu.AddMapping with mu.Last RETURNING mapOK

CALL mu.AddMapping with mu.Address RETURNING mapOK

Step 3: Loop through database records and build keys
The Read/Write deduper builds a temporary key file out of the data from the database. To
do this, the application loops through each record and pulls the data from the fields that
match the mappings made above.

FOR EACH Record in database

Read Zip5, FirstName, LastName, StreetAddress, userInfo fields from
database

After pulling the data from the database, pass it to the Read/Write deduper with the
AddField function. The application must do this in the same order that it mapped the
data types in the step above.

Even if the fields in a database do not exactly match the components required by the
matchcode, MatchUp Object is able to extract only the information it needs. For example,
if the database only contained a full name field, that field could be passed twice and
MatchUp Object would recognize the first names and last names and only use the parts it
needed.

After passing each set of fields, call the BuildKey function to create the match key
according to the mappings and the current matchcode.

CALL mu.ClearFields

CALL mu.AddField with Zip5

CALL mu.AddField with FirstName

CALL mu.AddField with LastName

CALL mu.AddField with StreetAddress

CALL mu.BuildKey
40

Reference Guide Read/Write Deduping
The UserInfo is a unique identifier for each record. The application will need this to later
match the deduping information to the original records.

CALL mu.SetUserInfo with userInfo

The WriteRecord function adds the current key and UserInfo to the key field.

CALL mu.WriteRecord

Repeat for every record in the current data set.

NEXT Record

Step 4: Begin processing the records
The Process function switches the Read/Write deduper from writing new keys to
comparing the stored keys to each other.

CALL mu.Process

Step 5: Examine the processed records
At this point, loop through the processed records, and get information on each record’s
unique/duplicate status and how many duplicates of each record exist in the data set.

WHILE mu.ReadRecord does not return 0

Each call to the ReadRecord function advances the deduper to the next record and
populates the fields returned by the functions below.

PRINT "Record: " + mu.GetUserInfo
PRINT "Key: " + mu.GetKey
PRINT "Dupe Group: " + mu.GetDupeGroup
PRINT mu.GetCount + " records in this dupe group."
PRINT "This is record #" + mu.GetEntry + " in this dupe group."

The Results property indicates whether the record is unique, a record with duplicates, or a
duplicate of another record.

CASE mu.GetResults Contains
MS03 :PRINT "This record is a duplicate."
MS02 :PRINT "This record has duplicates."
MS01 :PRINT "This record is unique."

ENDCASE

The result codes returned by the GetResults function also indicate which combination or
combinations defined by the matchcode produced the hit. In addition to the status code,
other potential result codes correspond to a specific combination number, so the
application needs to use logical AND operation for each bit to actually make use of this
information.

CALL mu.GetResults Contains
MS06 Match: Rule 1 Matched another record by matchcode combination 1
41

Read/Write Deduping MatchUp Object
MS07 Match: Rule 2 Matched another record by matchcode combination 2
MS08 Match: Rule 3 Matched another record by matchcode combination 3
MS09 Match: Rule 4 Matched another record by matchcode combination 4
MS10 Match: Rule 5 Matched another record by matchcode combination 5
MS11 Match: Rule 6 Matched another record by matchcode combination 6
MS12 Match: Rule 7 Matched another record by matchcode combination 7
MS13 Match: Rule 8 Matched another record by matchcode combination 8
MS14 Match: Rule 9 Matched another record by matchcode combination 9
MS15 Match: Rule 10 Matched another record by matchcode combination 10
MS16 Match: Rule 11 Matched another record by matchcode combination 11
MS17 Match: Rule 12 Matched another record by matchcode combination 12
MS18 Match: Rule 13 Matched another record by matchcode combination 13
MS19 Match: Rule 14 Matched another record by matchcode combination 14
MS20 Match: Rule 15 Matched another record by matchcode combination 15
MS21 Match: Rule 16 Matched another record by matchcode combination 16

Read/Write Deduping Functions
The following is a master list of the function in the Read/Write deduper interface.

Initialize the Read/Write Interface
The following functions prepare the Read/Write deduper for use and link it to its
supporting data files.

SetPathToMatchUpFiles . 44
SetLicenseString . 44
SetMatchcodeName . 46
SetMatchcodeObject . 46
SetKeyFile . 47
SetGroupSorting . 47
InitializeDataFiles . 48
GetInitializeErrorString . 49
GetBuildNumber . 49
GetDatabaseDate . 50
GetDatabaseExpirationDate . 50
GetLicenseExpirationDate . 51

Map Database Fields
Before generating match keys for the database records, the application must supply the
Read/Write deduper with information about what sort of data it will be handling.

ClearMappings . 51
AddMapping . 52
42

Reference Guide Read/Write Deduping
Read Data and Build the Match Key
The following functions take the real data being compared and construct a match key
according to the mappings defined with the above functions and the matchcode defined
when the Read/Write deduper was initialized.

ClearFields . 53
AddField . 53
BuildKey . 54
SetKey . 54
SetUserInfo . 55
WriteRecord . 55

Process Records
This single function takes every record passed via the WriteRecord function and
determines which are unique, which have duplicates, and which are duplicates.

Process . 56

Retrieve Dupe Data for Each Record
The functions in this section cycle through each record processed and return output
unique/duplicate information.

ReadRecord . 56
GetStatusCode . 57
GetCount . 57
GetDupeGroup . 57
GetEntry . 58
GetCombinations . 58
GetKey . 59
GetUserInfo . 59
GetResults . 59
43

Read/Write Deduping MatchUp Object
Initialize the Read/Write Interface
The following functions prepare the Read/Write deduper for use and link it to its
supporting data files.

SetPathToMatchUpFiles
String value. This function accepts a string value containing the path to the folder
containing the MatchUp Read/Write data files. It must be called before calling the
InitializeDataFiles function.

To provide maximum compatibility with Windows, three files are installed in your
‘Common App Data’ directory. For Windows Vista and Windows 7 the default location is
“C:\ProgramData\MelissaDATA\MatchUp.” For Windows XP the default location is
“C:\Documents and Settings\All Users\Application Data\Melissa DATA\MatchUp.”
The location of this directory can be changed by users so please note this, as it can often be
the source of issues when running the samples/demos.

SetLicenseString
Passes the license string required for MatchUp Object to function. Required only if the
environment variable method is not used.

Each customer is issued a license string when purchasing MatchUp Object or renewing a
subscription. This string must be passed to this function to unlock the functionality of
MatchUp Object.

The license string is normally set using an environment variable, either MD_LICENSE
or MD_LICENSE_DEMO. Calling SetLicenseString is an alternative method for
setting the license string, but applications developed for a production environment should
only use the environment variable.

When using an environment variable, it is not necessary to call the SetLicenseString
function.

For more information on setting the environment variable, see “Entering Your MatchUp
Object License” on page 4.

Syntax

mdMU->SetPathToMatchUpFiles(char)

C

mdMUReadWriteSetPathToMatchUpFiles(mdMU, char)

COM+/.NET

mdMU.PathToMatchUpFiles = string
44

Reference Guide Read/Write Deduping
Using an environment variable makes it much easier to update the license string without
having to edit and re-compile the application.

When using an environment variable, it is still necessary to call the SetLicenseString
function, but it is not necessary to pass the license string to the function. Instead, simply
call the function and pass an empty string as the parameter.

Windows

Windows users can set environment variables by doing the following:

•Select Start > Settings, and then click Control Panel.

•Double-click System, and then click the Advanced tab.

•Click Environment Variables, and then select either SystemVariables or
Variables for the user X.

•Click New.

•Enter “MDMATCHUP_LICENSE” in the Variable Name box.

•Enter the license string in the Variable Value box and then click OK.

Please remember that these settings take effect only upon start of the program. It may
be necessary to quit and restart the development environment to incorporate the
changes.

Linux/Solaris/HP-UX/AIX

Unix-based OS users can simply set the license string via the following:

export MDMATCHUP_LICENSE=A1B2C3D4E5 (not the actual license string).

After putting this setting in the profile, remember to restart the shell.

Input Parameters
A string value containing an empty string or, if necessary, a valid license string for
MatchUp Object.

Return Values
This function returns an integer value. A value of 1 indicates a valid license string, 0
an invalid or empty string,

Syntax

int = mdMU->SetLicenseString(char)

C

int = mdMUReadWriteSetLicenseString(mdMU, char)

COM+/.NET

integer = mdMU.SetLicenseString string
45

Read/Write Deduping MatchUp Object
SetMatchcodeName
This function selects the matchcode to use for the current Read/Write deduping
operation. The SetMatchcodeName function accepts a string value that must match the
name of an existing matchcode in the current matchcode file.

SetMatchcodeObject
This functions selects the matchcode to use for the current Read/Write deduping
operation. It largely duplicates the purpose of the SetMatchcodeName function, but
instead of accepting a character value containing the name of a matchcode in the current
matchcode file, this function accepts a Matchcode object created using the Matchcode
Editing interface.

Because this function requires the use of a separate interface to create the Matchcode
object variable, it is usually simpler to use the SetMatchcodeName function.

It is possible, however, to use this function to build a new matchcode on the fly using the
Matchcode Editing interface. Unless a specific application demands such flexibility, it is
usually much simpler to add a new matchcode to the matchcode file and call it using the
SetMatchcodeName function.

Syntax

mdMU->SetMatchcodeName(char)

C

mdMUReadWriteMatchcodeName(mdMU, char)

COM+/.NET

mdMU.MatchcodeName = string

Syntax

mdMU->SetMatchcodeObject(mdMUMatchcode)

C

mdMUReadWriteSetMatchcodeObject(mdMU, mdMUMatchcode)

COM+/.NET

mdMU.MatchcodeObject = mdMUMatchcode
46

Reference Guide Read/Write Deduping
SetKeyFile
This function selects the name and file path for the key file that will be used for the
current Read/Write deduping operation.

Every instance of the Read/Write deduper creates a new key file for each session. Any
existing key file with the same name is overwritten. If more than one instance of the Read/
Write deduper is running on either the same computer or the same network, make certain
that they do not point to the same key file. If one instance overwrites the key file being
used by another instance, it can cause the second instance to fail.

SetGroupSorting
This function sets the Read/Write deduper to return processed records in dupe group
order. By default, the Read/Write deduper returns records sorted by their match key. This
should return records in the same dupe group together or close to each other.

Passing a boolean True value to this function will cause the Read/Write deduper to return
the processed records sorted into dupe groups.

The additional processing can increase the time needed to dedupe a large list and it is
often possible to use the information returned by the Read/Write deduper to sort records
into this order programmatically.

Syntax

mdMU->SetKeyFile(char)

C

mdMUReadWriteSetKeyFile(mdMU, char)

COM+/.NET

mdMU.KeyFile = string

Syntax

mdMU->SetGroupSorting()

C

mdMUReadWriteSetGroupSorting(mdMU)

COM+/.NET

mdMU.GroupSorting
47

Read/Write Deduping MatchUp Object
InitializeDataFiles
The InitializeDataFiles function opens the needed data files and prepares the MatchUp
Object for use. Before calling this function, the application must have successfully called
the SetLicenseString and SetPathToMatchUpFiles functions.

Check the return value of the GetInitializeErrorString function to retrieve the result of
the initialization call. Any result other than “No Error” means the initialization failed for
some reason.

Return Value

Returns a value of the enumerated type ProgramStatus.

If any other value other than NoError is returned, check the GetInitializeErrorString
function to see the reason for the error.

Value Reason

0 ErrorNone No error - initialization was successful.

1 ErrorConfigFile Could not find mdMatchUp.dat.

2 ErrorLicenseExpired The License String has expired.

3 ErrorDatabaseExpired The database has expired.

4 ErrorMatchcodeNotSpecified No matchcode was specified.

5 ErrorMatchcodeNotFound Specified Matchcode does not exist.

6 ErrorInvalidMatchcode The specified matchcode is not valid.

7 ErrorKeyFile The specified key file was not found.

Syntax

ProgramStatus = mdMU->InitializeDataFiles()

C

int = mdMUReadWriteInitializeDataFiles(mdMU)

COM+/.NET

ProgramStatus = mdMU.InitializeDataFiles
48

Reference Guide Read/Write Deduping
GetInitializeErrorString
Returns a descriptive string to describe the error from the InitializeDataFiles function.

The possible strings returned by this function are:

"No error"
"Could not find mdMatchUp.dat."
"The License String has expired."
"The database has expired."
"No matchcode was specified."
"Specified Matchcode does not exist."
"The specified matchcode is not valid."
"The specified key file was not found."

Return Value

The GetInitializeErrorString function returns a string describing the error caused
when the InitializeDataFiles function cannot be called successfully.

GetBuildNumber
The GetBuildNumber function returns the current development release build number of
MatchUp Object.

Input Parameters

None.

Return Value

The GetBuildNumber function returns the current development release build
number of the MatchUp Object.

Syntax

char = mdMU->GetInitializeErrorString()

C

char = mdMUReadWriteGetInitializeErrorString(mdMU)

COM+/.NET

string = mdMU.GetInitializeErrorString

Syntax

char = mdMU->GetBuildNumber()

C

char = mdMUReadWriteGetBuildNumber(mdMU)

COM+/.NET

string = mdMU.GetBuildNumber
49

Read/Write Deduping MatchUp Object
GetDatabaseDate
The GetDatabaseDate function returns a string value that represents the revision date of
the MatchUp Object data files.

Input Parameters

None.

Return Value

The GetDatabaseDate function returns a string value that represents the date of the
MatchUp Object data files.

GetDatabaseExpirationDate
Returns a string value containing the expiration date of the current database file.

Input Parameters

None.

Return Value

Returns a string value indicating the expiration date of the current database file
(mdMatchUp.dat).

Syntax

char = mdMU->GetDatabaseDate()

C

char = mdMUReadWriteGetDatabaseDate(mdMU)

COM+/.NET

string = mdMU.GetDatabaseDate

Syntax

char = mdMU->GetDatabaseExpirationDate()

C

char = mdMUReadWriteGetDatabaseExpirationDate(mdMU)

COM+/.NET

string = mdMU.GetDatabaseExpirationDate
50

Reference Guide Read/Write Deduping
GetLicenseExpirationDate
Returns a string value containing the expiration date of the current license string. After
this date, MatchUp Object will no longer function.

Input Parameters

None.

Return Value

Returns a string value that indicates the expiration date of the license string.

Map Database Fields
Before generating match keys for the database records, the application must supply the
Read/Write deduper with information about what sort of data it will be handling.

ClearMappings
This function clears any existing field mappings. It is a good idea to call this function
before beginning to map fields, especially if the application may be required to perform
multiple deduping operations in a single session.

Syntax

char = mdMU->GetLicenseExpirationDate()

C

char = mdMUReadWriteGetLicenseExpirationDat(mdMU)

COM+/.NET

string = mdMU.GetLicenseExpirationDate

Syntax

mdMU->ClearMappings()

C

mdMUReadWriteClearMappings(mdMU)

COM+/.NET

mdMU.ClearMappings
51

Read/Write Deduping MatchUp Object
AddMapping
This function selects the types of fields that will be used to build the match key and the
order in which they will be added using the AddField function.

The function accepts an enumerated value of the type MatchcodeMapping. It tells the
Read/Write deduper which data types will be used for this deduping operation and in
what order they will be passed to the deduper when passing data using the AddField
function.

The data types used must contain the data expected by the matchcode being used, but it
does not have to be an exact match. For example, if the matchcode requires a five-digit
ZIP Code but the data in the list uses a single “City/State/ZIP" field, simply add the
CityStZip mapping and pass the full string to the AddField function later. MatchUp
Object is smart enough to use only the information it needs.

In another example, a matchcode calls for both last name and first name but database
contains only full names. The application would simply apply the FullName mapping
twice and pass the full name data twice to the AddField function.

To demonstrate the above:

mdMU->AddMapping(mdMU.CityStZip) // uses only ZIP Code
mdMU->AddMapping(mdMU.FullName) // uses last name only
mdMU->AddMapping(mdMU.FullName) // uses first name only
mdMU->AddMapping(mdMU.Address)

For a list of the possible values, see “MatchcodeMapping” on page 148.

The function returns a non-zero value if the mapping is allowed by the selected
matchcode, false if the mapping caused an error.

Syntax

int = mdMU->AddMapping(mdMU.MatchcodeMapping)

C

int = mdMUReadWriteAddMapping(mdMU,
mdMU.mdMatchUpMatchmodeMapping)

COM+/.NET

integer = mdMU.AddMapping(mdMU.MatchcodeMapping)
52

Reference Guide Read/Write Deduping
Read Data and Build the Match Key
The following functions take the real data being compared and construct a match key
according to the mappings defined with the above functions and the matchcode defined
when the Read/Write deduper was initialized.

ClearFields
This function clears all values from previous calls to the AddField or ReadRecord
function. The application should call this function after calling the WriteRecord function,
before the first call to the AddField function, or before each call to the ReadRecord
function.

AddField
This function passes the contents of a field from a database to the deduper prior to calling
the BuildKey function.

Fields must be passed to this function in the same order that the corresponding data types
were mapped using the AddMapping function.

The following example expands on the previous AddMapping example. The matchcode
uses five-digit ZIP codes, last and first names, in that order, and the street addresses. The
list includes only a single “City/ST/ZIP" and a single full name field.

mdMU->AddField("Rancho Santa Margarita, CA 92688")
mdMU->AddField("Raymond F. Melissa")
mdMU->AddField("Raymond F. Melissa")
mdMU->AddField("22382 Avenida Empresa")

Syntax

mdMU->ClearFields()

C

mdMUReadWriteClearFields(mdMU)

COM+/.NET

mdMU.ClearFields
53

Read/Write Deduping MatchUp Object
The deduper would use only the ZIP Code from the first field, the last name from the
second AddField and first name from the third AddField.

BuildKey
This function builds a match key using information passed via the AddField function.
The information passed via calls to the AddField function and, using the mapping defined
by the AddMapping function and the pattern defined by the matchcode being used,
builds a match key.

A match key is a character string built according to a pattern defined by the current
matchcode, consisting only of enough information to determine if the current record is
unique or has a duplicate within the key file.

For example, let’s assume the matchcode called for a five-digit ZIP Code, first ten
characters of a last name, first ten of a first name, a street number and the first ten
characters of a street name. The current record is for Raymond F. Melissa at 22382
Avenida Empresa in the 92688 ZIP Code. The match key would be:

92688MELISSA RAYMOND 22382EMPRESA

Because “Empresa” is only seven characters, the key would be padded with three spaces at
the end.

SetKey
This function accepts a match key before calling the ReadRecord function.

Syntax

mdMU->AddField(char)

C

mdMUReadWriteAddField(mdMU, char)

COM+/.NET

mdMU.AddField(string)

Syntax

mdMU->BuildKey()

C

mdMUReadWriteBuildKey(mdMU)

COM+/.NET

mdMU.BuildKey
54

Reference Guide Read/Write Deduping
The BuildKey function creates a key from input data. If, however, the match keys are
already stored in the source database, use this function to pass the keys to the deduper
before calling MatchRecord.

SetUserInfo
This function accepts a character value that uniquely identifies each record in a set of data.

The character value passed to this function must be unique for every record. This enables
the application to associate the match key in the key file to the corresponding record in the
list.

WriteRecord
This function creates a record of the current key and user info and writes it to the key file.

The WriteRecord function requires that either the BuildKey or SetKey function, plus the
SetUserInfo function, have previously been called. This function writes the information
stored by those functions to a new record in the current key file.

The application cannot call this function after the Process function has been called.

Syntax

mdMU->SetKey(char)

C

mdMUReadWriteSetKey(mdMU, char)

COM+/.NET

mdMU.Key = string

Syntax

mdMU->SetUserInfo(char)

C

mdMUReadWriteSetUserInfo(mdMU, char)

COM+/.NET

mdMU.SetUserInfo = string

Syntax

mdMU->WriteRecord()

C

mdMUReadWriteWriteRecord(mdMU)

COM+/.NET

mdMU.WriteRecord
55

Read/Write Deduping MatchUp Object
Process Records
This single function takes every record passed via the WriteRecord function and
determines which are unique, which have duplicates, and which are duplicates.

Process
This function switches the Read/Write deduper from write mode to read mode. After
calling this function, the application can no longer add more records to the key file with
the WriteRecord function.

The Process function will pass every record though the Read/Write deduping logic to
determine which records are unique, which have duplicates, and which are duplicates.

Retrieve Dupe Data for Each Record
The functions in this section cycle through each record processed and return output
unique/duplicate information.

ReadRecord
This function reads the next line from the key file and populates the relevant fields with
duplicate status information.

The ReadRecord function reads the next record from the key file, if there is another
record, and populates the fields used by the following functions: GetResults; GetCount;
GetDupeGroup; GetEntry; GetKey; GetUserInfo.

This function cannot be called until after the application has called the Process function.

Syntax

mdMU->Process()

C

mdMUReadWriteProcess(mdMU)

COM+/.NET

mdMU.Process
56

Reference Guide Read/Write Deduping
If there are no more records, this returns an integer value of zero.

GetStatusCode
This function is deprecated. You should use the GetResults function instead.

GetCount
This function returns an integer value indicating the total number of matching records in
this dupe group.

If there were matches detected during processing, the GetCount function will return a
integer value equalling the number of duplicate keys found.

GetDupeGroup
This function returns a long integer value indicating the group of duplicate records that
the current key matches.

Every unique record (one with no duplicates) will have a unique “Dupe Group” number.
Any duplicate record will be assigned the same number. This function returns the Dupe
Group number of a matching record in the key file.

Syntax

int = mdMU->ReadRecord()

C

int = mdMUReadWriteReadRecord(mdMU)

COM+/.NET

integer = mdMU.ReadRecord

Syntax

int = mdMU->GetCount()

C

int = mdMUReadWriteGetCount(mdMU)

COM+/.NET

integer = mdMU.Count

Syntax

long = mdMU->GetDupeGroup()

C

long = mdMUReadWriteGetDupeGroup(mdMU)

COM+/.NET

long = mdMU.DupeGroup
57

Read/Write Deduping MatchUp Object
GetEntry
Returns an integer value indicating where the current record would fall within the order of
its dupe group.

If the ReadRecord function detected at least one duplicate, this function will return an
integer value that indicates where the current record falls within its dupe group. If this is
the sixth matching record found, this function will return a 6.

GetCombinations
This function is deprecated. You should use the GetResults function instead.

This function returns a long integer value that can be used to determine which
combinations defined in the current matchcode were matched by the last record processed
by the ReadRecord function.

Each matchcode may contain as many as 16 different combinations of data types that may
be used to detect a match. A matching record may match more than one combination.

This function returns a long integer that can be used to determine which combination

produced the match, if the ReadRecord function detected a matching key.

Syntax

int = mdMU->GetEntry()

C

int = mdMUReadWriteGetEntry(mdMU)

COM+/.NET

integer = mdMU.Entry

Syntax

long = mdMU->GetCombinations()

C

long = mdMUReadWriteGetCombinations(mdMU)

COM+/.NET

long = mdMU.Combinations
58

Reference Guide Read/Write Deduping
GetKey
This function returns the match key used by the last call to the ReadRecord function.

The GetKey returns the match key created by the last call to the BuildKey function and
used by the last call to the ReadRecord function.

GetUserInfo
This function returns a character value containing the value passed to the SetUserInfo
function. It returns the unique identifier associated with the record being checked by the
Read/Write deduper.

The application will need this information if the application has to match the current
matchkey back to an original data source.

GetResults
This function returns a comma-delimited string of four-character codes that detail the
output disposition of the last call to the ReadRecord function. It will also contain the
result code of any matchcode combination which contributed to the present record
matching other records in its dupe group.

The GetResults function is intended to replace the GetStatusCode and
GetCombinations functions, providing a single source of information about the last
MatchRecord function call and eliminating the need to perform bitwise operations on the
GetCombinations return value to determine which matchcode combinations contributed
to the record matching other records in its Dupe Group.

Syntax

char = mdMU->GetKey()

C

char = mdMUReadWriteGetKey(mdMU)

COM+/.NET

string = mdMU.Key

Syntax

char = mdMU->GetUserInfo()

C

char = mdMUReadWriteGetUserInfo(mdMU)

COM+/.NET

string = mdMU.UserInfo
59

Read/Write Deduping MatchUp Object
The function returns one or more of the following codes in a comma-delimited list:

MatchUp Object: Result Codes

Code Short Description Long Description

MS01 Unique Record The reocrd did not match any other records.

MS02 Has Duplicates The record matched other records and was tagged as the output

record.

MS03 Is Duplicate The record matched other records and was tagged as a duplicate.

MS04 Record Suppressed The source record was suppressed.

MS05 Record Not

Intersected

The source record was not intersected.

MS06 Match: Rule 1 Records were matched by matchcode combination 1.

MS07 Match: Rule 2 Records were matched by matchcode combination 2.

MS08 Match: Rule 3 Records were matched by matchcode combination 3.

MS09 Match: Rule 4 Records were matched by matchcode combination 4.

MS10 Match: Rule 5 Records were matched by matchcode combination 5.

MS11 Match: Rule 6 Records were matched by matchcode combination 6.

MS12 Match: Rule 7 Records were matched by matchcode combination 7.

MS13 Match: Rule 8 Records were matched by matchcode combination 8.

MS14 Match: Rule 9 Records were matched by matchcode combination 9.

MS15 Match: Rule 10 Records were matched by matchcode combination 10.

MS16 Match: Rule 11 Records were matched by matchcode combination 11.

MS17 Match: Rule 12 Records were matched by matchcode combination 12.

MS18 Match: Rule 13 Records were matched by matchcode combination 13.

MS19 Match: Rule 14 Records were matched by matchcode combination 14.

MS20 Match: Rule 15 Records were matched by matchcode combination 15.

MS21 Match: Rule 16 Records were matched by matchcode combination 16.

MS30 Suppressor Record The lookup record suppressed a source record.
60

Reference Guide Read/Write Deduping
MS31 Intersector Record The lookup record intersected a source record.

Syntax

StringValue = object->GetResults();

C

StringValue = mdMatchUpGetResults(object);

COM

StringValue = object.Results

MatchUp Object: Result Codes
61

Incremental Deduping MatchUp Object
Incremental Deduping

Incremental deduping is usually used for real-time data entry validation. For example, a
call center data-entry system where an operator would like to determine whether or not
the caller is an existing customer. At any time, a calling program can pass the incremental
deduping engine the contents of a record; the engine will then report as to whether or not
this record is a dupe, and if so, which record or records it matches.

Incremental deduping consists of the following steps:

1. The program processes a record and sends the specific information (ZIP/PC,
Name, Address, etc) to MatchUp Object.

2. Based on previous records sent to the API, it reports whether or not the record
from the first step matches any of these previous records.

3. Optionally, the application can tell MatchUp Object to add this record to its data-
base for consideration in future comparisons.

The Historical Database
The incremental deduping engine relies heavily on a historical database that it maintains.
The lifetime of this database is as long as necessary (seconds, days, even years). This
database is constructed and maintained by MatchUp Object, so it can determine whether
or not an incoming record matches other records fairly quickly.

Multi-User/Multi-Thread Considerations
Incremental deduping is unique in that multiple users or multiple processes can access the
same historical database simultaneously. The API maintains a locking system to ensure
that competing processes don't collide. In order for two processes to work in this fashion,
the initialization function for each process must specify the same historical database (a.k.a.
“key file”).

Transaction-Based Processing
The Incremental deduper interface of MatchUp Object features the option of using
transaction-based operations on the historical database. This enables an application to
process multiple calls to the AddRecord function as one, speeding up processing of large
lists.
62

Reference Guide Incremental Deduping
Incremental Order of Operations
Using the Incremental deduper is pretty straightforward. This section will outline the
basic steps and then show an example of the programming logic for a typical
implementation of the Incremental deduper.

1. Initialize the Incremental deduper.

After creating an instance of the Incremental deduper, point the object toward its
supporting data file, select a matchcode and key file to use, and initialize these files.

2. Create field mappings.

In order to build a key to compare to the key file, the Incremental deduper needs to
know which types of data the program will be passing to the deduper and in what
order.

3. Read the record from the data source.

This can be a new address passed from a website, a single record from a newly
acquired list or data source, to be compared against the master list.

4. Build a match key for the incoming record.

This consists of passing the actual data to the deduper in the same order used when
creating a field mapping. After passing the necessary fields (usually a small subset of
the fields from each record) via the AddField function, the Incremental deduper
uses this information to generate a match key.

5. Compare the match key to the key file.

The MatchRecord function searches the key file for any keys that match the new
record. If it finds a match, it provides information on the duplicate records in the
key file.

6. Write new records to the key file.

The new key, whether or not it is unique, can then be written to the key file, so it
can be used for future deduping operations. The program code must also write the
new address record to the database separately.

The following section outlines a common implementation of the Incremental deduper.
We are using pseudocode for maximum clarity. Working sample programs in several
programming languages can be found on the MatchUp Object install disc and more can
be downloaded from the support page on the Melissa Data website.

Step 1: Initialize the Incremental deduper
After creating an instance of the Incremental deduper, point the object toward its
supporting data file, select a matchcode and key file to use, and initialize these files.
63

Incremental Deduping MatchUp Object
First, create a new instance of the Incremental deduper.

SET mu = NEW mdMUIncremental

In order to successfully initialize this new instance, point it toward its data files and supply
a valid license string.

CALL mu.SetLicenseString with LicenseString

CALL mu.SetPathToMatchUpFiles with PathToMatchUpFiles

Before initialization, specify which matchcode and key file will be used for the current
deduping operation.

CALL mu.SetMatchcodeName with MatchCodeName

CALL mu.SetKeyFile with PathToKeyFile

If all of the above have been set correctly, calling the InitializeDataFiles function should
return a value of NoError. If it does not, call the GetInitializeErrorString function to
determine the reason for the failure to initialize.

CALL mu.InitializeDataFiles RETURNING initResult

IF initResult is not NoError THEN
PRINT "Initialization Error: " + mu.GetInitializeErrorString
EXIT PROGRAM

END IF

If the initialization was successful, call the following functions to display version and
expiration information about the instance of MatchUp Object currently in use on the local
computer.

PRINT "Confirming Initialization: " + mu.GetInitializeErrorString
PRINT "Build Number: " + mu.GetBuildNumber
PRINT "Database Date: " + mu.GetDatabaseDate
PRINT "Database Expiration Date: " + mu.GetDatabaseExpirationDate
PRINT "License Expiration Date: " + mu.GetLicenseExpirationDate

Step 2: Create field mappings
Field mappings define a valid incoming type of data for each matchcode component. For
example, a typical matchcode may include a five-digit ZIP Code, a last name, and a street
address. But the data coming in, however, may contain the city, state, and ZIP as a single
character field and the person’s full name as a single field as well.

Even if the fields in a database do not exactly match the components required by the
matchcode, MatchUp Object is able to extract only the information it needs.

CALL mu.ClearMappings

After clearing any mappings from a previous use of the Incremental deduper, call the
AddMapping function once for each field being considered.
64

Reference Guide Incremental Deduping
CALL mu.AddMapping with mu.CityStZip RETURNING mapOK
CALL mu.AddMapping with mu.FullName RETURNING mapOK
CALL mu.AddMapping with mu.Address RETURNING mapOK

Step 3: Get the record from the data source
Regardless of the source, the object only needs to read the fields containing the data that
the Incremental deduper needs for comparison.

READ Record FROM database RETURNING userInfo, CityStateZip,
TheFullName, StreetAddress

The userInfo field is any identifying character string that is unique to the current record.

Note that the Incremental deduper does not handle database input and output. This must
be done programmatically using whatever database interface is being used.

Step 4: Build the match key for the current record
We’ll use the data from the previous step to construct a match key to use in the next step.

CALL mu.ClearFields

After clearing any data from a previous use of the Incremental deduper, call the AddField
function once for each field being considered.

CALL mu.AddField with CityStateZip
CALL mu.AddField with TheFullName
CALL mu.AddField with StreetAddress

Pass the userInfo to the deduper using the SetUserInfo function.

CALL mu.SetUserInfo with userInfo

The BuildKey function constructs the match key out of the information passed via the
AddField function calls.

CALL mu.BuildKey

Step 5: Compare the match key to the key file
The MatchRecord function compares the match key to the key file and determines if the
key already exists in the key file.

CALL mu.MatchRecord

Check the GetResults function to determine if the MatchRecord call produced a match,
meaning that the current record is a duplicate to another one in the key file.

CALL mu.GetResults RETURNING ResultsCodes

If the record is a duplicate, this code retrieves information about the other duplicate
records in the database.

IF ResultsCodes contains “MS03” THEN // Record is a duplicate
65

Incremental Deduping MatchUp Object
PRINT "This record is in the database."
PRINT "There are " + mu.GetCount + " records in dupe group #" +

mu.GetDupeGroup
PRINT "It matches these records:"
WHILE mu.NextMatchingRecord
PRINT "#" + mu.GetEntry + " is Record: " + mu.GetUserInfo

ENDWHILE

“Dupe Group” is a number that gets assigned to each unique record. Duplicate records are
assigned the same number.

Step 6: Add the new key to the key file
In this example, duplicate records are being rejected while unique records are being added
to the database. Depending on the end user needs, the program may handle duplicate
records differently.

ELSE
CALL mu.AddRecord
Add New Record to master database

ENDIF

The AddRecord function only adds the new key to the key file. To add the data to the
database, the developer would need to implement that in code, according to whatever
database engine is in use.

Using the Transaction Functions
The transaction functions allow MatchUp Object to delay writing changes to the
historical database until all records have been compared and all duplicates detected. After
a call to the BeginTransaction function, the Incremental deduper will cache all calls to the
AddRecord function until a call to the CommitTransaction function, which writes all
changes to the keyfile in a single operation, significantly speeding up processing.

If any errors are detected, the RollbackTransaction function flushes all AddRecord
function calls since the call to the BeginTransaction function and no changes will be
written to the historical database.

Below is a simplified example of how transactions work with the Incremental deduper.

CALL BeginTransaction
FOR EACH Record in DatabaseTable

READ Record
Build Match Key
CALL MatchRecord
IF Record Is Unique THEN

CALL AddRecord
ENDIF
66

Reference Guide Incremental Deduping
NEXT Record
IF ERROR

CALL RollbackTransaction
Return

ENDIF
CALL CommitTransaction

Incremental Deduping Functions
The following is a master list of the functions in the Incremental deduper interface.

Initialize the Incremental Interface
The following functions prepare the Incremental deduper for use and link it to its
supporting data files.

SetPathToMatchUpFiles . 69
SetLicenseString . 69
SetMatchcodeName . 71
SetMatchcodeObject . 71
SetMustExist . 72
SetKeyFile . 72
InitializeDataFiles . 73
GetInitializeErrorString . 74
GetBuildNumber . 74
GetDatabaseDate . 75
GetDatabaseExpirationDate . 75
GetLicenseExpirationDate . 76

Map Database Fields
Before generating match keys for the records in the database, the code must supply the
Incremental deduper with information about what sort of data it will be handling.

ClearMappings . 76
AddMapping . 77

Read Data and Build the Match Key
The following functions take the real data being compared and construct a match key
according to the mappings defined with the above functions and the matchcode specified
when the Incremental deduper was initialized.

ClearFields . 78
AddField . 78
67

Incremental Deduping MatchUp Object
BuildKey . 79
SetKey . 80
SetUserInfo . 80

Compare Record to Database
The following functions compare the new key with the existing key file and, if a duplicate
is found, return information about the duplicate records in the file.

MatchRecord . 80
GetStatusCode . 81
NextMatchingRecord . 81
GetCount . 82
GetDupeGroup . 82
GetEntry . 82
GetCombinations . 83
GetKey . 83
GetUserInfo . 83
GetResults . 83

Add New Record to Key File
The Incremental deduper does not handle reading or writing data to the database. This
function only adds the new match key to the key file for future comparisons.

AddRecord . 85

Transaction Methods
The following functions enable the Incremental deduper to use transactions, processing
multiple calls to the AddRecord function before committing the changes to the key file.

BeginTransaction . 86
CommitTransaction . 86
RollbackTransaction . 88
68

Reference Guide Incremental Deduping
Initialize the Incremental Interface
The following functions prepare the Incremental deduper for use and link it to its
supporting data files.

SetPathToMatchUpFiles
String value. This function accepts a string value containing the path to the folder
containing the MatchUp data files. It must be called before calling the InitializeDataFiles
function.

To provide maximum compatibility with Windows, three files are installed in your
‘Common App Data’ directory. For Windows Vista and Windows 7 the default location is
“C:\ProgramData\MelissaDATA\MatchUp.” For Windows XP the default location is
“C:\Documents and Settings\All Users\Application Data\Melissa DATA\MatchUp.”
The location of this directory can be changed by users so please note this, as it can often be
the source of issues when running the samples/demos.

SetLicenseString
Passes the license string required for MatchUp Object to function.

Each customer is issued a license string when purchasing MatchUp Object or renewing a
subscription. This string must be passed to this function to unlock the functionality of
MatchUp Object.

The license string is normally set using an environment variable, either MD_LICENSE
or MD_LICENSE_DEMO. Calling SetLicenseString is an alternative method for
setting the license string, but applications developed for a production environment should
only use the environment variable.

When using an environment variable, it is not necessary to call the SetLicenseString
function.

For more information on setting the environment variable, see “Entering Your MatchUp
Object License” on page 4.

Syntax

mdMU->SetPathToMatchUpFiles(char)

C

mdMUIncrementalSetPathToMatchUpFiles(mdMU, char)

COM+/.NET

mdMU.PathToMatchUpFiles = string
69

Incremental Deduping MatchUp Object
Using an environment variable makes it much easier to update the license string without
having to edit and re-compile the application.

Windows

Windows users can set environment variables by doing the following:

•Select Start > Settings, and then click Control Panel.

•Double-click System, and then click the Advanced tab.

•Click Environment Variables, and then select either System Variables or
Variables for the user X.

•Click New.

•Enter “MD_LICENSE” in the Variable Name box.

•Enter the license string in the Variable Value box and then click OK.

Please remember that these settings take effect only upon start of the program. It may
be necessary to quit and restart the development environment to incorporate the
changes.

Linux/Solaris/HP-UX/AIX

Unix-based OS users can simply set the license string via the following:

•export MD_LICENSE=A1B2C3D4E5
(not the actual license string).

 After putting this setting in the profile, remember to restart the shell.

Input Parameters

A string value containing an empty string or, if necessary, a valid license string for
MatchUp Object.

Return Values

This function returns an integer value. A value of 1 indicates a valid license string, 0
an invalid or empty string,

Syntax

int = mdMU->SetLicenseString(char)

C

int = mdMUIncrementalSetLicenseString(mdMU, char)

COM+/.NET

integer = mdMU.SetLicenseString string
70

Reference Guide Incremental Deduping
SetMatchcodeName
This function selects the matchcode to use for the current Incremental deduping
operation. It accepts a string value that must match the name of an existing matchcode in
the current matchcode file.

SetMatchcodeObject
This function selects the matchcode to use for the current Incremental deduping
operation.

This function largely duplicates the purpose of the SetMatchcodeName function, but
instead of accepting a character value containing the name of a matchcode in the current
matchcode file, this function accepts a Matchcode object created using the Matchcode
Editing interface.

Because this function requires a separate interface to create the Matchcode object variable,
it is normally easier to use the SetMatchcodeName function.

It is possible, however, to use this function to build a new matchcode on the fly using the
Matchcode Editing interface. Unless a specific application demands such flexibility, it is
usually much simpler to add a new matchcode to the matchcode file using the Matchcode
Editor and call it using the SetMatchcodeName function.

Syntax

mdMU->SetMatchcodeName(char)

C

mdMUIncrementalSetMatchcodeName(mdMU, char)

COM+/.NET

mdMU.MatchcodeName = string

Syntax

mdMU->SetMatchcodeObject(mdMUMatchcode)

C

mdMUIncrementalSetMatchcodeObject(mdMU, mdMUMatchcode)

COM+/.NET

mdMU.MatchcodeObject = mdMUMatchcode
71

Incremental Deduping MatchUp Object
SetMustExist
This function determines whether or not the path specified by the SetKeyFile function
must point to an existing key file.

If this option is set to true, initialization of MatchUp Object will fail if the path specified
in the SetKeyFile function does not point to an existing key file.

If this option is false, and the path specified in the SetKeyFile function does not point to
an existing key file, a new empty key file will be created.

SetKeyFile
This function selects the name and file path for the key file that will be used for the
current Incremental deduping operation.

If the SetMustExist function has been set to True, the string value passed to the
SetKeyFile function must contain a valid path to an existing key file.

If the SetMustExist function has been set to False, MatchUp Object will create an empty
key file if none is found during initialization.

Syntax

mdMU->SetMustExist(bool)

C

mdMUIncrementalSetMustExist(mdMU, bool)

COM+/.NET

mdMU.MustExist = boolean

Syntax

mdMU->SetKeyFile(char)

C

mdMUIncrementalSetKeyFile(mdMU, char)

COM+/.NET

mdMU.KeyFile = string
72

Reference Guide Incremental Deduping
InitializeDataFiles
The InitializeDataFiles function opens the needed data files and prepares the MatchUp
Object for use.

Before calling this function, the code must have successfully called the SetLicenseString,
SetMatchcodeName (or SetMatchcodeObject) and SetPathToMatchUpFiles functions.

Check the return value of the GetInitializeErrorString function to retrieve the result of
the initialization call. Any result other than “No Error” means the initialization failed for
some reason.

Return Value

Returns a value of the enumerated type ProgramStatus.

If any other value other than ErrorNone is returned, check the
GetInitializeErrorString function to see the reason for the error.

Value Reason

0 ErrorNone No error - initialization was successful.

1 ErrorConfigFile Could not find mdMatchUp.dat.

2 ErrorLicenseExpired The License String has expired.

3 ErrorDatabaseExpired The database has expired.

4 ErrorMatchcodeNotSpecified No matchcode was specified.

5 ErrorMatchcodeNotFound Specified Matchcode does not exist.

6 ErrorInvalidMatchcode The specified matchcode is not valid.

7 ErrorKeyFile The specified key file was not found.

Syntax

ProgramStatus = mdMU->InitializeDataFiles()

C

ProgramStatus = mdMUIncrementalInitializeDataFiles(mdMU)

COM+/.NET

ProgramStatus = mdMU.InitializeDataFiles
73

Incremental Deduping MatchUp Object
GetInitializeErrorString
Returns a descriptive string to describe the error from the InitializeDataFiles function.
The possible strings returned by this function are:

No error
Could not find mdMatchUp.dat.
The License String has expired.
The database has expired.
No matchcode was specified.
Specified Matchcode does not exist.
The specified matchcode is not valid.
The specified key file was not found.

Return Value

The GetInitializeErrorString function returns a string describing the error caused
when the InitializeDataFiles function cannot be called successfully.

GetBuildNumber
The GetBuildNumber function returns the current development release build number of
MatchUp Object.

Input Parameters

None.

Return Value

The GetBuildNumber function returns the current development release build
number of the MatchUp Object.

Syntax

char = mdMU->GetInitializeErrorString()

C

char = mdMUIncrementalGetInitializeErrorString(mdMU)

COM+/.NET

string = mdMU.GetInitializeErrorString

Syntax

char = mdMU->GetBuildNumber()

C

char = mdMUIncrementalGetBuildNumber(mdMU)

COM+/.NET

string = mdMU.GetBuildNumber
74

Reference Guide Incremental Deduping
GetDatabaseDate
The GetDatabaseDate function returns a string value that represents the revision date of
the MatchUp Object data files.

Input Parameters

None.

Return Value

The GetDatabaseDate function returns a string value that represents the date of the
MatchUp Object data files.

GetDatabaseExpirationDate
Returns a string value containing the expiration date of the current database file.

Input Parameters

None

Return Value

Returns a string value indicating the expiration date of the current database file
(mdMatchUp.dat).

Syntax

char = mdMU->GetDatabaseDate()

C

char = mdMUIncrementalGetDatabaseDate(mdMU)

COM+/.NET

string = mdMU.GetDatabaseDate

Syntax

char = mdMU->GetDatabaseExpirationDate()

C

char = mdMUIncrementalGetDatabaseExpirationDate(mdMU)

COM+/.NET

string = mdMU.GetDatabaseExpirationDate
75

Incremental Deduping MatchUp Object
GetLicenseExpirationDate
Returns a string value containing the expiration date of the current license string. After
this date, MatchUp Object will no longer function.

Input Parameters

None

Return Value

Returns a string value that indicates the expiration date of the license string passed to
the SetLicenseString function.

Map Database Fields
Before generating match keys for the records in the database, the code must supply the
Incremental deduper with information about what sort of data it will be handling.

ClearMappings
This function clears any existing field mappings.

It is a good idea to call this function before beginning to map fields, especially if the
application may be required to perform multiple deduping operations in a single session.

Syntax

char = mdMU->GetLicenseExpirationDate()

C

char = mdMUIncrementalGetLicenseExpirationDate(mdMU)

COM+/.NET

string = mdMU.GetLicenseExpirationDate

Syntax

mdMU->ClearMappings()

C

mdMUIncrementalClearMappings(mdMU)

COM+/.NET

mdMU.ClearMappings
76

Reference Guide Incremental Deduping
AddMapping
This function selects the types of fields that will be used to build the match key and the
order in which they will be added using the AddField function.

The function accepts an enumerated value of the type MatchcodeMapping. It tells the
Incremental deduper which data types will be used for this deduping operation and in
what order they will be passed to the deduper when passing data using the AddField
function.

The data types used must contain the data expected by the matchcode being used, but it
does not have to be an exact match. For example, if the matchcode requires a five-digit
ZIP Code but the database contains a single “City/State/ZIP” field, simply add the
CityStZip mapping and pass the full string to the AddField function later. MatchUp
Object is smart enough to use only the information it needs.

In another example, a matchcode calls for both last name and first name but the database
contains only full names. Simply apply the FullName mapping twice and pass the full
name data twice to the AddField function.

Applying the two above examples to a matchcode that uses 5-digit ZIP codes, street
addresses, last and first names, in that order, use the following mappings:

mapOK = mdMU->AddMapping(mdMU.CityStZip)// uses only ZIP Code
mapOK = mdMU->AddMapping(mdMU.FullName) // uses last name only
mapOK = mdMU->AddMapping(mdMU.FullName) // uses first name only
mapOK = mdMU->AddMapping(mdMU.Address)

For a list of the possible values, see the table on page 148.

The function returns a non-zero value if the mapping is allowed by the selected
matchcode, false if the mapping caused an error.

Syntax

int = mdMU->AddMapping(mdMU.MatchcodeMapping)

C

int = mdMUIncrementalAddMapping(mdMU,
mdMU.mdMatchUpMatchmodeMapping)

COM+/.NET

integer = mdMU.AddMapping(mdMU.MatchcodeMapping)
77

Incremental Deduping MatchUp Object
Read Data and Build the Match Key
The following functions take the real data being compared and construct a match key
according to the mappings defined with the above functions and the matchcode specified
when the Incremental deduper was initialized.

ClearFields
This function clears all values from previous calls to the AddField function.

To ensure that no extraneous information carried over from one record to the next, call
this function after calling the BuildKey function or before the first call to the AddField
function.

AddField
This function passes the contents of a field from a database to the deduper while building
a match key.

This function passes a component of list data to the deduper prior to calling the BuildKey
function.

Fields must be passed to this function in the same order that the corresponding data types
were mapped using the AddMapping function.

The following example expands on the AddMapping example on the previous page. The
matchcode uses five-digit ZIP codes, the street addresses, last and first names, in that
order. The database contains a single “City/ST/ZIP” and a single full name field.

mdMU->AddField("Rancho Santa Margarita, CA 92688")
mdMU->AddField("Raymond F. Melissa")
mdMU->AddField("Raymond F. Melissa")
mdMU->AddField("22382 Avenida Empresa")

Syntax

mdMU->ClearFields()

C

mdMUIncrementalClearFields(mdMU)

COM+/.NET

mdMU.ClearFields
78

Reference Guide Incremental Deduping
The deduper would use only the ZIP Code from the first AddField mapping, the last
name from the second mapping, the first name from the third, etc.

BuildKey
This function builds a match key using information passed via the AddField function.

This function takes the information passed via calls to the AddField function and, using
the mapping defined by the AddMapping function and the pattern defined by the
matchcode being used, builds a match key.

A match key is a character string built according to a pattern defined by the current
matchcode, consisting only of enough information to determine if the current record is
unique or has a duplicate within the key file.

For example, let’s assume the matchcode called for a five-digit ZIP Code, first ten
characters of a last name, a street number and the first ten characters of a street name. The
current record is for Raymond F. Melissa at 22382 Avenida Empresa in the 92688 ZIP
Code. The match key would be:

92688MELISSA RAYMOND 22382EMPRESA

Because “Empresa” is only seven characters, the key would be padded with three spaces at
the end.

Syntax

mdMU->AddField(char)

C

mdMUIncrementalAddField(mdMU, char)

COM+/.NET

mdMU.AddField(string)

Syntax

mdMU->BuildKey()

C

mdMUIncrementalBuildKey(mdMU)

COM+/.NET

mdMU.BuildKey
79

Incremental Deduping MatchUp Object
SetKey
This function accepts a match key before calling the MatchRecord function.

The BuildKey function creates a key from input data. If, however, the match keys are
already stored in the source database, use this function to pass the keys to the deduper
before calling MatchRecord.

SetUserInfo
This function accepts a character value that uniquely identifies each record in a set of data.

The character value passed to this function must be unique for every record. This enables
the developer to associate the match key in the key file to the corresponding record in the
database.

Compare Record to Database
The following functions compare the new key with the existing key file and, if a duplicate
is found, return information about the duplicate records in the file.

MatchRecord
This function compares the current match key to the keys in the key file and determines if
this key matches a record that is already in the file.

If it is not a duplicate, a typical program would call the AddRecord function to add this
key to the current key file.

Syntax

mdMU->SetKey(char)

C

mdMUIncrementalSetKey(mdMU, char)

COM+/.NET

mdMU.Key = string

Syntax

mdMU->SetUserInfo(char)

C

mdMUIncrementalSetUserInfo(mdMU, char)

COM+/.NET

mdMU.SetUserInfo = string
80

Reference Guide Incremental Deduping
If it is a duplicate, the developer can use the GetKey, GetCount, GetDupeGroup,
GetResults and GetEntry functions to gather information about the existing duplicate
records in the file.

GetStatusCode
This function is deprecated. Use GetResults.

NextMatchingRecord
This function recalls the match data about the next record in the key file that matches the
current search key.

After the MatchRecord function has detected a match between the input record, use the
NextMatchingRecord function to loop through all of the matching records in the key file,
returning the match data for each record.

This function returns a true value if there is another matching record, false if there are no
more matching records, so an application can use a WHILE loop to repeatedly call the
GetEntry, GetResults, GetDupeGroup and GetKey functions for each matching record.

Syntax

mdMU->MatchRecord()

C

mdMUIncrementalMatchRecord(mdMU)

COM+/.NET

mdMU.MatchRecord

Syntax

int = mdMU->NextMatchingRecord()

C

int = mdMUIncrementalNextMatchingRecord(mdMU)

COM+/.NET

integer mdMU.NextMatchingRecord
81

Incremental Deduping MatchUp Object
GetCount
This function returns an integer value indicating the number of records in the key file that
matched the current key.

If there were matches detected during a call to the MatchRecord function, the GetCount
function will return a integer value equalling the number of duplicate keys found.

GetDupeGroup
This function returns a long integer value indicating the group of duplicate records that
the current key matches.

Every unique record (one with no duplicates) will have a unique “Dupe Group” number.
Any duplicate record will be assigned the same number. This function returns the Dupe
Group number of a matching record in the key file.

GetEntry
Returns an integer value indicating where the current record would fall within the order of
its dupe group.

This function will return an integer value that indicates where the current record falls within
its dupe group. If this is the sixth matching record found, this function will return a 6.

Syntax

int = mdMU->GetCount()

C

int = mdMUIncrementalGetCount(mdMU)

COM+/.NET

integer = mdMU.Count

Syntax

long = mdMU->GetDupeGroup()

C

long = mdMUIncrementalGetDupeGroup(mdMU)

COM+/.NET

long = mdMU.DupeGroup

Syntax

int = mdMU->GetEntry()

C

int = mdMUIncrementalGetEntry(mdMU)

COM+/.NET

integer = mdMU.Entry
82

Reference Guide Incremental Deduping
GetCombinations
This function is deprecated. Use GetResults.

GetKey
This function returns the match key created by the last call to the BuildKey function and
used by the last call to the MatchRecord function.

GetUserInfo
This function returns a character value containing the value passed to the SetUserInfo
function.

This function returns the unique identifier associated with the record being checked by
the Incremental deduper.

The Incremental deduper will need this information to match the current match key back
to an original data source.

GetResults
This function returns a comma-delimited string of four-character codes that detail the
output disposition of the last call to the MatchRecord function. It will also contain the
result code of any matchcode combination which contributed to the present record
matching other records in its dupe group.

The GetResults function is intended to replace the GetStatusCode and
GetCombinations functions, providing a single source of information about the last
MatchRecord function call and eliminating the need to perform bitwise operations on the

Syntax

char = mdMU->GetKey()

C

char = mdMUIncrementalGetKey(mdMU)

COM+/.NET

string = mdMU.Key

Syntax

char = mdMU->GetUserInfo()

C

char = mdMUIncrementalGetUserInfo(mdMU)

COM+/.NET

string = mdMU.UserInfo
83

Incremental Deduping MatchUp Object
GetCombinations return value to determine which matchcode combinations contributed
to the record matching other records in its Dupe Group.

 The function returns one or more of the following codes in a comma-delimited list:

MatchUp Object: Result Codes

Code Short Description Long Description

MS01 Unique Record The reocrd did not match any other records.

MS02 Has Duplicates The record matched other records and was tagged as the output

record.

MS03 Is Duplicate The record matched other records and was tagged as a duplicate.

MS04 Record Suppressed The source record was suppressed.

MS05 Record Not

Intersected

The source record was not intersected.

MS06 Match: Rule 1 Records were matched by matchcode combination 1.

MS07 Match: Rule 2 Records were matched by matchcode combination 2.

MS08 Match: Rule 3 Records were matched by matchcode combination 3.

MS09 Match: Rule 4 Records were matched by matchcode combination 4.

MS10 Match: Rule 5 Records were matched by matchcode combination 5.

MS11 Match: Rule 6 Records were matched by matchcode combination 6.

MS12 Match: Rule 7 Records were matched by matchcode combination 7.

MS13 Match: Rule 8 Records were matched by matchcode combination 8.

MS14 Match: Rule 9 Records were matched by matchcode combination 9.

MS15 Match: Rule 10 Records were matched by matchcode combination 10.

MS16 Match: Rule 11 Records were matched by matchcode combination 11.

MS17 Match: Rule 12 Records were matched by matchcode combination 12.

MS18 Match: Rule 13 Records were matched by matchcode combination 13.

MS19 Match: Rule 14 Records were matched by matchcode combination 14.

MS20 Match: Rule 15 Records were matched by matchcode combination 15.

MS21 Match: Rule 16 Records were matched by matchcode combination 16.
84

Reference Guide Incremental Deduping
Add New Record to Key File
The Incremental deduper does not handle reading or writing data to the database. This
function only adds the new match key to the key file for future comparisons.

AddRecord
The AddRecord function appends the key generated by the most recent call to the
BuildKey function to the current file. The typical application would use this function to
add a new unique record to the key file if no duplicate was found by the last call to the
MatchRecord function.

Note: This function does not add the current record to the database. It merely appends a
new key to the key file.

Transaction Methods
The following functions enable the Incremental deduper to use transactions, processing
multiple calls to the AddRecord function before committing the changes to the key file.

MS30 Suppressor Record The lookup record suppressed a source record.

MS31 Intersector Record The lookup record intersected a source record.

Syntax

StringValue = object->GetResults();

C

StringValue = mdMatchUpGetResults(object);

COM

StringValue = object.Results

Syntax

mdMU->AddRecord()

C

mdMUIncrementalAddRecord(mdMU)

COM+/.NET

mdMU.AddRecord

MatchUp Object: Result Codes
85

Incremental Deduping MatchUp Object
BeginTransaction
This function tells MatchUp Object to wrap subsequent multiple calls to the AddRecord
function with a transaction block.

This will greatly speed up processing when adding large numbers of records in the
Incremental processor because Records will not be physically written to the Incremental
database until the CommitTransaction function is called. The transaction functions are
used in the same way that BEGIN, COMMIT and ROLLBACK are used in SQL.

Even though the keys have not been permanently added, Records will still be matched
properly. However, other running processes that may be matching against the same
database WILL NOT see these new records until after a call to the CommitTransaction
function. Thus, transaction processing should not be used if multiple threads, processes,
users, or machines are accessing the same Incremental database.

The BeginTransaction function returns true when transaction processing is successfully
initialized.

CommitTransaction
This function tells MatchUp Object to commit, or add, the previous calls to the
AddRecord function to the key file since the BeginTransaction function was called.

This will greatly speed up processing when adding large numbers of records in the
Incremental processor because Records will not be physically written to the Incremental
database until the CommitTransaction function is called. The transaction functions are
used in the same way that BEGIN, COMMIT and ROLLBACK are used in SQL.

Even though the keys have not been permanently added, Records will still be matched
properly. However, other running processes that may be matching against the same
database WILL NOT see these new records until after the call to the
CommitTransaction function. Thus, transaction processing should not be used if
multiple threads, processes, users, or machines are accessing the same Incremental
database.

Syntax

BooleanValue = mdMU->BeginTransaction()

C

BooleanValue = mdMUIncrementalBeginTransaction(mdMU)

COM+/.NET

BooleanValue = mdMU.BeginTransaction
86

Reference Guide Incremental Deduping
The CommitTransaction function returns true when an existing transaction has
successfully completed.

Syntax

BooleanValue = mdMU->CommitTransaction()

C

BooleanValue = mdMUIncrementalCommitTransaction(mdMU)

COM+/.NET

BooleanValue = mdMU.CommitTransaction
87

Incremental Deduping MatchUp Object
RollbackTransaction
This function enables you to roll back or erase the previous calls to the AddRecord
function from the last call BeginTransaction function. A boolean value of true is returned
if a successful rollback is completed.

Even though the RollbackTransaction will ensure that the keys have not been
permanently added, Records will still be matched properly. Therefore, other running
processes that may be matching against the same database will not see these new records.
Thus, transaction processing SHOULD NOT be used if multiple threads/processes/
users/machines are accessing the same Incremental database.

The RollbackTransaction function may also be used when an error is raised with an input
or master database, prompting you to gracefully rollback the key file to the point before
the current problematic data was processed.

Syntax

BooleanValue = mdMu->RollbackTransaction()

C

BooleanValue = mdMUIncrementalRollbackTransaction(muMU)

COM+/.NET

BooleanValue = mdMU.RollbackTransaction
88

Reference Guide Hybrid Deduping
Hybrid Deduping

The Hybrid deduper differs from the Incremental and Read/Write dedupers in that it
does not maintain a key file of its own. It is up to the developer to maintain a list of match
keys to use for deduping operations. This increases the flexibility of the Hybrid deduper
but at the expense of programming complexity.

The main advantage of Hybrid deduping is that it allows the developer to build smaller
lists of match keys on the fly and quickly compare records to a small subset of the
database.

Clustering
The concept of Clustering, outlined in the first chapter, is essential to the Hybrid
deduper. Unlike the other dedupers, where the clustering is taking place behind the
scenes, the Hybrid deduper allows the developer to use clustering to compare a record
against only a small portion of a list.

The Hybrid deduper uses the concept of a cluster size, which is the maximum number of
characters at the beginning of a key that can be used to group a number of keys into
smaller groups that can be compared against each other. For example, a cluster size of 5
means that the first five characters of a match key are used to create the clusters.

In other words, only the records where the first five characters of the match key for one
record are identical to the first five characters of the match key for another record are
considered when performing a Hybrid deduping operation.

Key Maintenance
Unlike the other interfaces, the Hybrid deduper does not automatically handle the read/
write operations to a key file. While this forces the developer to do more work, it allows a
great deal of flexibility in how match keys are stored and handled.

In the previous example, with a cluster size of 5, if the match keys are stored in a field
within a SQL database, a cluster could be built quickly by performing a SELECT query
where the first five characters of the match key field matches the first five characters of the
match key for the new record.
89

Hybrid Deduping MatchUp Object
While this gives the developer far more flexibility, it also requires a great deal more coding
and a greater understanding of certain MatchUp concepts.

Hybrid Order of Operations
Using the Hybrid deduper is not as straightforward as the other interfaces, as it puts
greater burden on the developer to handle storage and management of match keys.

This section will outline the basic steps and then show an example of the programming
logic for a typical implementation of the Hybrid deduper.

1. Initialize the Hybrid deduper.

After creating an instance of the Hybrid deduper, point the object toward its
supporting data file, select a matchcode to use, and initialize these files.

2. Create field mappings.

In order to build keys to compare, the Hybrid deduper needs to know which types
of data the program will be passing to the deduper and in what order.

3. Build a master list of keys.

Each record must have a match key so the Hybrid deduper can select a cluster of
records or check for duplicates. This consists of passing the data used in record
comparison from each record to the deduper in the same order used when creating
a field mapping. After passing the necessary fields (usually a small subset of the
fields from each record) via the AddField function, the Hybrid deduper uses this
information to generate a match key.

4. Build a match key for the new address record.

Repeat the step above to create a match key for the record to be compared against
the cluster.

5. Build the cluster list.

Cycle through the master key list, extract only those records where the first part of
the match key equals the first part of the match key for the new record.

6. Compare the match key to the cluster list.

Loop through the cluster key file for any keys that match the new record. If it finds
a match, the CompareKey function indicates a match.

The following section outlines a common implementation of the Hybrid deduper. We are
using pseudocode for maximum clarity. Working sample programs in several
programming languages can be found on the MatchUp Object install disc and more can
be downloaded from the MatchUp Object support page on the Melissa Data website.
90

Reference Guide Hybrid Deduping
Step 1: Initialize the Hybrid deduper
After creating an instance of the Hybrid deduper, point the object toward its supporting
data file, select a matchcode and key file to use, and initialize these files.

First, create a new instance of the Hybrid deduper.

SET mu = NEW mdMUHybrid

In order to successfully initialize this new instance, point it toward its data files and supply
a valid license string. Also, select a matchcode, by name, before initializing.

CALL mu.SetLicenseString with LicenseString
CALL mu.SetPathToMatchUpFiles with DataPath
CALL mu.SetMatchcodeName with MatchcodeName

If all of the above have been set correctly, calling the InitializeDataFiles function should
return a ProgramStatus value of ErrorNone. If it does not, call the
GetInitializeErrorString function to determine the reason for the failure to initialize.

CALL mu.InitializeDataFiles RETURNING ProgramStatus

IF ProgramStatus is not ErrorNone THEN
CALL mu.GetInitializeErrorString RETURNING ErrorMsg
Display ErrorMsg
Exit Routine

END IF

If the initialization was successful, call the following functions to display version and
expiration information about the instance of MatchUp Object currently in use on the local
computer.

PRINT "Confirming Initialization: " + mu.GetInitializeErrorString
PRINT "Build Number: " + mu.GetBuildNumber
PRINT "Database Date: " + mu.GetDatabaseDate
PRINT "Database Expiration Date: " + mu.GetDatabaseExpirationDate
PRINT "License Expiration Date: " + mu.GetLicenseExpirationDate

Step 2: Create field mappings
Field mappings define which types of data the Hybrid deduper is expecting. For example,
a typical matchcode may include a five-digit ZIP Code, a last name, and a street address.
The data coming in, however, may contain the city, state, and ZIP as a single character
field and the person’s full name as a single field as well.

As long as MatchUp Object knows what kind of data is being passed to it, the object is
smart enough to pull what it needs from the data supplied to it.

CALL mu.ClearMappings

After clearing any mappings from a previous use of the Hybrid deduper, call the
AddMapping function once for each field being considered.
91

Hybrid Deduping MatchUp Object
CALL mu.AddMapping with mu.Zip9
CALL mu.AddMapping with mu.First
CALL mu.AddMapping with mu.Last
CALL mu.AddMapping with mu.Address

Step 3: Create Master Key File
Unlike the Incremental and Read/Write dedupers, the Hybrid deduper requires the
developer to maintain a list of keys for the deduping operation. In this example, the keys
are stored in a text file generated on the fly.

Open KeyFile as text file for writing

Each record is read from the database, converted to a match key and written to the text
file.

FOR EACH Record in Database
Read Zip9, FirstName, LastName, StreetAddress fields from database
CALL mu.ClearFields
CALL mu.AddField with Zip9
CALL mu.AddField with FirstName
CALL mu.AddField with LastName
CALL mu.AddField with StreetAddress
CALL mu.BuildKey
CALL mu.GetKey RETURNING Key
Write Key to KeyFile

NEXT

Close KeyFile

Step 4: Create the Match Key for the Input Data
The next step is to take the record that is to be checked and create a match key for it.

GET Zip9, FirstName, LastName, StreetAddress from data source

CALL mu.ClearFields
CALL mu.AddField with Zip9
CALL mu.AddField with FirstName
CALL mu.AddField with LastName
CALL mu.AddField with StreetAddress
CALL mu.BuildKey
CALL mu.GetKey RETURNING Key

Step 5: Create the Cluster List
Use the key generated in the last step to select only those records where the first part of the
match key matches the same part of the match key for the record to be checked. The size
of the portion of the match key to be checked is determined by the GetClusterSize
function.

CALL mu.GetKeySize RETURNING KeySize
92

Reference Guide Hybrid Deduping
CALL mu.GetClusterSize RETURNING ClusterSize

SET ClusterKey = Left part of Key, size = ClusterSize

ClusterKey is a string, with a length equalling ClusterSize, used to match the first part of
the match key from the input record. Cycle through the key list and create a cluster of only
those records that match the cluster key to a new text file.

Open KeyFile for reading

FOR EACH Record in KeyFile

Read MasterKey
IF First ClusterSize characters of MasterKey = ClusterKey THEN

ADD Record to Cluster

END IF

NEXT

Close KeyFile

Step 6: Check Input Record Against Cluster List
With the cluster list built, check the whole key for the input record against each line of the
cluster list, using the CompareKey function to determine if there was a match.

FOR EACH Record in Cluster

Read MatchKey

CALL mu.CompareKey with MasterKey, MatchKey RETURNING NoError

IF NoError is True
PRINT MasterKey matches MatchKey

END IF

NEXT

Hybrid Deduping Functions
The following is a master list of the functions in the Hybrid deduper interface.

Initialize the Hybrid Interface
The following functions prepare the Hybrid deduper for use and link it to its supporting
data files.

SetPathToMatchUpFiles . 94
SetLicenseString . 95
SetMatchcodeName . 96
SetMatchcodeObject . 97
93

Hybrid Deduping MatchUp Object
InitializeDataFiles . 97
GetInitializeErrorString . 98
GetBuildNumber . 99
GetDatabaseDate . 99
GetDatabaseExpirationDate . 100
GetLicenseExpirationDate . 100

Map Database Fields and Build Keys
Before generating match keys for the records in the database, the code must supply the
Hybrid deduper with information about what sort of data it will be handling.

ClearMappings . 101
AddMapping . 101

Build the Match Keys
The following functions gather the input data and use it to generate match keys according
to the mapping defined above and the selected matchcode.

ClearFields . 102
AddField . 102
BuildKey . 103
GetKey . 104

Compare Records
Use the following functions to determine how much of each match key will be used to
select records for the cluster and compare the input data to the keys in the cluster.

GetKeySize . 104
GetClusterSize . 105
CompareKeys . 105
GetResults . 106

Initialize the Hybrid Interface
The following functions prepare the Hybrid deduper for use and link it to its supporting
data files.

SetPathToMatchUpFiles
This function accepts a string value containing the path to the folder containing the
MatchUp Hybrid data files.
94

Reference Guide Hybrid Deduping
This function must be called before calling the InitializeDataFiles function.

To provide maximum compatibility with Windows, three files are installed in your
‘Common App Data’ directory. For Windows Vista and Windows 7 the default location is
“C:\ProgramData\MelissaDATA\MatchUp.” For Windows XP the default location is
“C:\Documents and Settings\All Users\Application Data\Melissa DATA\MatchUp.”
The location of this directory can be changed by users so please note this, as it can often be
the source of issues when running the samples/demos.

SetLicenseString
Passes the license string required for MatchUp Object to function.

Each customer is issued a license string when purchasing MatchUp Object or renewing a
subscription. This string must be passed to this function to unlock the functionality of
MatchUp Object.

The license string is normally set using an environment variable, either MD_LICENSE
or MD_LICENSE_DEMO. Calling SetLicenseString is an alternative method for
setting the license string, but applications developed for a production environment should
only use the environment variable.

When using an environment variable, it is not necessary to call the SetLicenseString
function.

For more information on setting the environment variable, see Entering Your MatchUp
Object License on page 4 of this guide.

Using an environment variable makes it much easier to update the license string without
having to edit and re-compile the application.

Windows

Windows users can set environment variables by doing the following:

•Select Start > Settings, and then click Control Panel.

•Double-click System, and then click the Advanced tab.

•Click Environment Variables, and then select either System Variables or
Variables for the user X.

Syntax

mdMU->SetPathToNameFiles(char)

C

mdMUHybridSetPathToMatchUpFiles(mdMU, char)

COM+/.NET

mdMU.PathToMatchUpFiles = string
95

Hybrid Deduping MatchUp Object
•Click New.

•Enter “MD_LICENSE” in the Variable Name box.

•Enter the license string in the Variable Value box and then click OK.

Please remember that these settings take effect only upon start of the program. It may
be necessary to quit and restart the development environment to incorporate the
changes.

Linux/Solaris/HP-UX/AIX

Unix-based OS users can simply set the license string via the following:

export MD_LICENSE=A1B2C3D4E5 (not the actual license string).

 After putting this setting in the profile, remember to restart the shell.

Input Parameters

A string value containing an empty string or, if necessary, a valid license string for
MatchUp Object.

Return Values

This function returns an integer value. A value of 1 indicates a valid license string, 0
an invalid or empty string.

SetMatchcodeName
The SetMatchcodeName function accepts a string value that must match the name of an
existing matchcode in the current matchcode file.

Syntax

int = mdMU->SetLicenseString(char)

C

int = mdMUHybridSetLicenseString(mdMU, char)

COM+/.NET

integer = mdMU.SetLicenseString string

Syntax

mdMU->SetMatchcodeName(char)

C

mdMUHybridMatchcodeName(mdMU, char)

COM+/.NET

mdMU.MatchcodeName = string
96

Reference Guide Hybrid Deduping
SetMatchcodeObject
This functions selects the matchcode to use for the current Hybrid deduping operation.

This function largely duplicates the purpose of the SetMatchcodeName function, but
instead of accepting a character value containing the name of a matchcode in the current
matchcode file, this function accepts a Matchcode object created using the Matchcode
Editor interface.

Because this function requires the use of a separate interface to create the Matchcode
object variable, it is normally simpler to use the SetMatchcodeName function.

It is possible, however, to use this function to build a new matchcode on the fly using the
Matchcode Editor interface. Unless a specific application demands such flexibility, it is
usually much simpler to add a new matchcode to the matchcode file and call it using the
SetMatchcodeName function.

InitializeDataFiles
The InitializeDataFiles function opens the needed data files and prepares the MatchUp
Object for use.

Before calling this function, the application must have successfully called the
SetLicenseString and SetPathToMatchUpFiles functions.

Check the return value of the GetInitializeErrorString function to retrieve the result of
the initialization call. Any result other than “ErrorNone” means the initialization failed for
some reason.

Return Value

Returns a value of the enumerated type ProgramStatus.

Syntax

mdMU->SetMatchcodeObject(mdMUMatchcode)

C

mdMUHybridSetMatchcodeObject(mdMU, mdMUMatchcode)

COM+/.NET

mdMU.MatchcodeObject = mdMUMatchcode

Value Reason

0 ErrorNone No error - initialization was successful.

1 ErrorConfigFile Could not find mdMatchUp.dat.

2 ErrorLicenseExpired The License String has expired.
97

Hybrid Deduping MatchUp Object
If any other value other than ErrorNone is returned, check the
GetInitializeErrorString function to see the reason for the error.

GetInitializeErrorString
Returns a descriptive string to describe the error from the InitializeDataFiles function.

The possible strings returned by this function are:

No error
Could not find mdMatchUp.dat.
The License String has expired.
The database has expired.
No matchcode was specified.
Specified Matchcode does not exist.
The specified matchcode is not valid.

The GetInitializeErrorString function returns a string describing the error caused when
the InitializeDataFiles function cannot be called successfully.

3 ErrorDatabaseExpired The database has expired.

4 ErrorMatchcodeNotSpecified No matchcode was specified.

5 ErrorMatchcodeNotFound Specified Matchcode does not exist.

6 ErrorInvalidMatchcode The specified matchcode is not valid.

Syntax

ProgramStatus = mdMU->InitializeDataFiles()

C

ProgramStatus = mdMUHybridInitializeDataFiles(mdMU)

COM+/.NET

ProgramStatus = mdMU.InitializeDataFiles

Syntax

char = mdMU->GetInitializeErrorString()

C

char = mdMUHybridGetInitializeErrorString(mdMU)

COM+/.NET

string = mdMU.GetInitializeErrorString

Value Reason
98

Reference Guide Hybrid Deduping
GetBuildNumber
The GetBuildNumber function returns the current development release build number of
MatchUp Object.

Input Parameters

None.

Return Value

The GetBuildNumber function returns the current development release build
number of the MatchUp Object.

GetDatabaseDate
The GetDatabaseDate function returns a string value that represents the revision date of
the MatchUp Object data files.

Input Parameters

None.

Return Value

The GetDatabaseDate function returns a string value that represents the date of the
MatchUp Object data files.

Syntax

char = mdMU->GetBuildNumber()

C

char = mdMUHybridGetBuildNumber(mdMU)

COM+/.NET

string = mdMU.GetBuildNumber

Syntax

char = mdMU->GetDatabaseDate()

C

char = mdMUHybridGetDatabaseDate(mdMU)

COM+/.NET

string = mdMU.GetDatabaseDate
99

Hybrid Deduping MatchUp Object
GetDatabaseExpirationDate
Returns a string value containing the expiration date of the current database file.

Input Parameters

None

Return Value

Returns a string value indicating the expiration date of the current database file
(mdMatchUp.dat).

GetLicenseExpirationDate
Returns a string value containing the expiration date of the current license string. After
this date, MatchUp Object will no longer function.

Input Parameters

None

Return Value

Returns a string value that indicates the expiration date of the license string passed to
the SetLicenseString function.

Syntax

char = mdMU->GetDatabaseExpirationDate()

C

char = mdMUHybridGetDatabaseExpirationDate(mdMU)

COM+/.NET

string = mdMU.GetDatabaseExpirationDate

Syntax

char = mdMU->GetLicenseExpirationDate()

C

char = mdMUHybridGetLicenseExpirationDate(mdMU)

COM+/.NET

string = mdMU.GetLicenseExpirationDate
100

Reference Guide Hybrid Deduping
Map Database Fields and Build Keys
Before generating match keys for the records in the database, the code must supply the
Hybrid deduper with information about what sort of data it will be handling.

ClearMappings
This function clears any existing field mappings.

It is a good idea to call this function before beginning to map fields, especially if the
application is required to perform multiple deduping operations in a single session.

AddMapping
This function selects the types of fields that will be used to build the match key and the
order in which they will be added using the AddField function.

The function accepts an enumerated value of the type MatchcodeMapping. It tells the
Hybrid deduper which data types will be used for this deduping operation and in what
order they will be passed to the deduper when passing data using the AddField function.

The data types used must contain the data expected by the matchcode being used, but it
does not have to be an exact match. For example, if the matchcode requires a five-digit
ZIP Code but the database contains a single “City/State/ZIP" field, simply add the
CityStZip mapping and pass the full string to the AddField function later. MatchUp
Object is smart enough to use only the information it needs.

In another example, a matchcode calls for both last name and first name but database
contains only full names. The application would simply apply the FullName mapping
twice and pass the full name data twice to the AddField function.

Let’s apply the two above examples to a matchcode that uses 5-digit ZIP codes, street
addresses, last and first names, in that order.

mdMU->AddMapping(mdMU.CityStZip) // uses only ZIP Code
mdMU->AddMapping(mdMU.FullName) // uses last name only
mdMU->AddMapping(mdMU.FullName) // uses first name only
mdMU->AddMapping(mdMU.Address)

Syntax

mdMU->ClearMappings()

C

mdMUHybridClearMappings(mdMU)

COM+/.NET

mdMU.ClearMappings
101

Hybrid Deduping MatchUp Object
For a list of the possible values, see the table on page 148.

The function returns a non-zero value if the mapping is allowed by the selected
matchcode, false if the mapping caused an error.

Build the Match Keys
The following functions gather the input data and use it to generate match keys according
to the mapping defined above and the selected matchcode.

ClearFields
Use this function before the first call to AddField function for each record or after calling
the BuildKey function.

AddField
This function passes the field data to the deduper while building a match key.

This function passes a component of data to the deduper prior to calling the BuildKey
function.

Fields must be passed to this function in the same order that the corresponding data types
were mapped using the AddMapping function.

The following example expands on the AddMapping function example on the previous
page. The matchcode uses five-digit ZIP codes, last and first names, and the street

Syntax

int = mdMU->AddMapping(mdMU.MatchcodeMapping)

C

int = mdMUHybridAddMapping(mdMU,
mdMU.mdMatchUpMatchmodeMapping)

COM+/.NET

integer = mdMU.AddMapping(mdMU.MatchcodeMapping)

Syntax

mdMU->ClearFields()

C

mdMUHybridClearFields(mdMU)

COM+/.NET

mdMU.ClearFields
102

Reference Guide Hybrid Deduping
addresses, in that order. The file includes only a single “City/ST/ZIP" and a single full
name field.

mdMU->AddField("Rancho Santa Margarita, CA 92688")
mdMU->AddField("Raymond F. Melissa")
mdMU->AddField("Raymond F. Melissa")
mdMU->AddField("22382 Avenida Empresa")

The deduper would use only the ZIP Code from the first field, the last name from the
second and first name from the third.

BuildKey
This function takes the information passed via calls to the AddField function and, using
the mapping defined by the AddMapping function and the pattern defined by the
matchcode being used, builds a match key.

A match key is a character string built according to a pattern defined by the current
matchcode, consisting only of enough information to determine if the current record is
unique or has a duplicate within the key file.

For example, let’s assume the matchcode called for a five-digit ZIP Code, first ten
characters of a last name, a street number and the first ten characters of a street name. The
current record is for Raymond F. Melissa at 22382 Avenida Empresa in the 92688 ZIP
Code. The match key would be:

92688MELISSA RAYMOND 22382EMPRESA

Because “Empresa” is only seven characters, the key would be padded with three spaces at
the end.

Syntax

mdMU->AddField(char)

C

mdMUHybridAddField(mdMU, char)

COM+/.NET

mdMU.AddField(string)

Syntax

mdMU->BuildKey()

C

mdMUHybridBuildKey(mdMU)

COM+/.NET

mdMU.BuildKey
103

Hybrid Deduping MatchUp Object
GetKey
This function returns a string value containing the match key generated by the most recent
call to the BuildKey function.

Use this function to recall the most recently generated match key before writing it to a key
file or passing it to the CompareKey function.

Compare Records
Use the following functions to determine how much of each match key will be used to
select records for the cluster and compare the input data to the keys in the cluster.

GetKeySize
This function returns an integer value indicating the number of characters in a key
generated using the matchcode selected using the SetMatchcodeName function.

This function can be useful for determining field sizes or how much memory will need to
be allocated, if the programming language requires the developer to handle memory
management.

Syntax

char = mdMU->GetKey()

C

char = mdMUHybridGetKey(mdMU)

COM+/.NET

string = mdMU.Key

Syntax

int = mdMU->GetKeySize()

C

int = mdMUHybridGetKeySize(mdMU)

COM+/.NET

integer = mdMU.KeySize
104

Reference Guide Hybrid Deduping
GetClusterSize
This function returns an integer value indicating the maximum size of the portion of the
match key that can be used for clustering.

Use this function to determine how much of the key to use for comparison when building
the cluster file, a subset of keys from your master database.

CompareKeys
This function compares two match keys and returns a long integer value indicating
whether they match.

If the CompareKeys function does not find a match, the return value will be zero. If there
was a match, this function returns an unsigned long integer value indicating which
combination or combinations within the matchcode produced the match.

Each bit of the integer value matches a specific combination. Use a logical AND operation
to determine if a particular combination produced the match. For example:

If (mdMU->GetCombination AND 0x8000) THEN Print "Combo 16 Matched"

Although this function does not return an enumerated value, it does use the same values as
the MatchcodeCombination enumeration used by the Matchcode Editing interface.

For a list of these values see the table on page 147.

The CompareKeys function does not return any information about dupe groups or the
number of duplicate records. This is because the Hybrid deduper does not keep track of
matching records (it is up to the programmer to do this).

Syntax

int = mdMU->GetClusterSize()

C

int = mdMUHybridGetClusterSize(mdMU)

COM+/.NET

integer = mdMU.ClusterSize

Syntax

long = mdMU->CompareKeys()

C

long= mdMUHybridCompareKeys(mdMU)

COM+/.NET

long = mdMU.CompareKeys
105

Hybrid Deduping MatchUp Object
GetResults
This function returns a comma-delimited string of four-character codes that detail the
output disposition of the last call to the CompareKeys function. It will also contain the
result code of any matchcode combination which contributed to the present record
matching other records in its dupe group.

The GetResults function is intended to add new functionality of a returned Status Code
and matchcode Combinations previously available by evaluating the CompareKeys return
value, providing a single source of information about the last CompareKeys function call,
and eliminating the need to perform bitwise operations on the return value to determine
which matchcode combinations contributed to the record matching the other match key.

 The function returns one or more of the following codes in a comma-delimited list:

MatchUp Object: Result Codes

Code Short Description Long Description

MS01 Unique Record The reocrd did not match any other records.

MS02 Has Duplicates The record matched other records and was tagged as the output

record.

MS03 Is Duplicate The record matched other records and was tagged as a duplicate.

MS04 Record Suppressed The source record was suppressed.

MS05 Record Not
Intersected

The source record was not intersected.

MS06 Match: Rule 1 Records were matched by matchcode combination 1.

MS07 Match: Rule 2 Records were matched by matchcode combination 2.

MS08 Match: Rule 3 Records were matched by matchcode combination 3.

MS09 Match: Rule 4 Records were matched by matchcode combination 4.

MS10 Match: Rule 5 Records were matched by matchcode combination 5.

MS11 Match: Rule 6 Records were matched by matchcode combination 6.

MS12 Match: Rule 7 Records were matched by matchcode combination 7.

MS13 Match: Rule 8 Records were matched by matchcode combination 8.

MS14 Match: Rule 9 Records were matched by matchcode combination 9.

MS15 Match: Rule 10 Records were matched by matchcode combination 10.
106

Reference Guide Hybrid Deduping
MS16 Match: Rule 11 Records were matched by matchcode combination 11.

MS17 Match: Rule 12 Records were matched by matchcode combination 12.

MS18 Match: Rule 13 Records were matched by matchcode combination 13.

MS19 Match: Rule 14 Records were matched by matchcode combination 14.

MS20 Match: Rule 15 Records were matched by matchcode combination 15.

MS21 Match: Rule 16 Records were matched by matchcode combination 16.

MS30 Suppressor Record The lookup record suppressed a source record.

MS31 Intersector Record The lookup record intersected a source record.

Syntax

StringValue = object->GetResults();

C

StringValue = mdMatchUpGetResults(object);

COM

StringValue = object.Results

MatchUp Object: Result Codes
107

Matchcode Interface MatchUp Object
Matchcode Interface

The Matchcode Editor for Windows will handle the task of creating and modifying
matchcodes for many situations. The editor application will also run on a Linux system
under WINE.

However, because MatchUp Object works across multiple platforms and not all users will
have access to a Windows emulator, MatchUp Object also includes an interface for
creating, modifying and viewing matchcodes programmatically on any system.

The Matchcode Interface also enables applications to create and use matchcodes on the
fly, if this becomes advantageous to do.

Creating matchcodes programmatically is more complicated and advanced than using the
Windows GUI editor. The Windows Matchcode Editor handles error checking and
enforces many of the rules described in the chapter on matchcodes, while the Matchcode
Interface returns the necessary error codes to detect such problems but requires that the
developer implement the necessary error handling.

Using the Matchcode Interface requires a more thorough understanding of matchcodes
and how they are used by MatchUp Object. We recommend carefully reading the
beginning of chapter 6 before attempting to use the features in this chapter.

Order of Operations for
Creating Matchcodes
Using the Matchcode Interface is not overly complicated but there are many options that
must be considered for matchcodes and matchcode components.

This section will outline the basic steps and then show an example of the programming
logic for a typical implementation of the Matchcode Interface.

1. Initialize the Matchcode Interface and set the data path.

The Matchcode Interface does not require a license string so this step is much
simpler than with the deduper interfaces.

2. Create a new matchcode.

The CreateNewMatchcode function creates a new, blank matchcode for editing.
108

Reference Guide Matchcode Interface
3. Create new matchcode components.

Matchcode components are created as class variables. Create an instance of the
MatchcodeComponent for each component.

4. Set the options for each matchcode component.

Use the functions of the matchcode component class to select the options for the
component type, size, matching strategy, swap pair, and to which combinations the
component belongs.

5. Add the components to the new matchcode.

Use the AddMatchcodeItem function to add the component to the new
matchcode. At this point, the Matchcode Interface checks the component for
errors.

6. Save the changes to the matchcode file.

The Matchcode Interface can either save the changes to the original matchcode file
or to a new copy of the file.

The following section shows a simplified code sample, written in pseudocode, showing
the creation of a basic matchcode using the Matchcode Interface.

Step 1: Initialize the Matchcode Interface
Initialization consists of creating a new instance of the Matchcode class and connecting
that instance to the data files. The Matchcode Interface does not require a license string,
so many of the functions found in the deduper interfaces are not present here.

SET mc = NEW mdMUMatchcode
CALL mc.SetPathToMatchUpFiles with PathToMatchUpFiles

IF mc.ErrorNone == mc.InitializeDataFiles THEN

PRINT "Initializing DataFiles..."
PRINT "Confirm Init Non-Error: " + mc.GetInitializeErrorString

ELSE

PRINT "Init Error: " + mc.GetInitializeErrorString

ENDIF

Step 2: Create a new matchcode
A new matchcode requires a name. This program forces the users to keep entering a name
until a valid name is entered.

REPEAT
PRINT "Enter New Matchcode Name: "
GET INPUT NewMatchCodeName
CALL mc.CreateNewMatchcode with NewMatchCodeName RETURNING Created
IF Created = 0 THEN PRINT "Could Not Create Matchcode!"

UNTIL Created <> 0
109

Matchcode Interface MatchUp Object
Step 3: Create new matchcode components
Matchcode components are created as instances of the MatchcodeComponent class.
Another approach would be to create an array or simply create and add each component as
part of a loop.

SET mcComp, mcComp2, mcComp3, mcComp4, mcComp5 = NEW
mdMUMatchcodeComponent

Step 4: Set the options for each matchcode component
Use the functions of the matchcode component class to select the options for the
component type, size, matching strategy, swap pair, and to which combinations the
component belongs.

CALL mcComp.SetComponentType WITH MatchCodeComponentType.Zip5
CALL mcComp.SetStart WITH MatchcodeStart.Left
CALL mcComp.SetFuzzy WITH MatchcodeFuzzy.Exact
CALL mcComp.SetSwap WITH MatchcodeSwap.NoSwap
CALL mcComp.SetFieldMatch WITH MatchcodeFieldMatch.NoFieldMatch
CALL mcComp.SetSize WITH 5
CALL mcComp.SetCombination WITH (MatchcodeCombination.Combo1 OR

MatchcodeCombination.Combo2)

Step 5: Add the components to the new matchcode
Use the AddMatchcodeItem function to add the component to the new matchcode. At
this point, the Matchcode Editing Matchcode Interface allows you to check for errors,
when attempting to add this components.

CALL mc.AddMatchcodeItem WITH mcComp RETURNING mcCompAdded
IF mcCompAdded <> 0 THEN PRINT "Component Added."

Step 6: Repeat for each component
Repeat steps 4 & 5 for each component.

CALL mcComp2.SetComponentType WITH MatchCodeComponentType.Last
CALL mcComp2.SetStart WITH MatchcodeStart.Left
CALL mcComp2.SetFuzzy WITH MatchcodeFuzzy.AccurateNear
CALL mcComp2.SetNear WITH 1
CALL mcComp2.SetSwap WITH MatchcodeSwap.NoSwap
CALL mcComp2.SetFieldMatch WITH mcComp.BothBlankMatch
CALL mcComp2.SetSize WITH 7
CALL mcComp2.SetCombination WITH (MatchcodeCombination.Combo1 OR

MatchcodeCombination.Combo2)
CALL mc.AddMatchcodeItem WITH mcComp2 RETURNING mcCompAdded
IF mcCompAdd <> 0 THEN PRINT "Component Added"

Repeat until all five components have been created and added to the current matchcode.
110

Reference Guide Matchcode Interface
Step 7: Save the changes to the matchcode file
The Matchcode Editing Matchcode Interface can either save the changes to the original
matchcode file or to a new copy of the file.

CALL mc.Save

Order of Operations
for Reading Matchcodes
Reading the matchcode file is simpler in that it requires no thought about the rules for
matchcodes, but it does require some programming to translate the values returned into
meaningful information.

1. Initialize the Matchcode Interface and set the data path.

The Matchcode Interface does not require a license string so this step is much
simpler than with the deduper interfaces.

2. Retrieve the matchcode.

The FindMatchcode function loads the specified matchcode into memory.

3. Begin cycling through every component in the matchcode.

The Matchcode Interface returns the number of components in the current
matchcode. Use this number to loop through all of the components, assigning each
component into to a MatchcodeComponent class variable.

4. Retrieve the component settings.

Call the MatchcodeComponent functions that return the settings for each
component and, if necessary, translate them into meaningful information.

These functions would normally be used in conjunction with those for creating and
modifying matchcodes but, for simplicity and clarity, this section will concentrate solely
on showing how to retrieve the matchcode and component information.

Step 1: Initialize the Matchcode Interface
Initialization consists of creating a new instance of the Matchcode class and connecting
that instance to the data files. The Matchcode Interface does not require a license string so
many of the functions found in the deduper interfaces are not present here.

SET mc = NEW mdMUMatchcode
CALL mc.SetPathToMatchUpFiles with PathToMatchUpFiles

IF mc.ErrorNone == mc.InitializeDataFiles THEN
111

Matchcode Interface MatchUp Object
PRINT "Initializing DataFiles..."
PRINT "Confirm Init Non-Error: " + mc.GetInitializeErrorString

ELSE

PRINT "Init Error: " + mc.GetInitializeErrorString

ENDIF

Step 2: Retrieve a matchcode
The FindMatchcode function requires the name of an existing matchcode in the current
matchcode file.

PRINT "Enter Existing Matchcode to Look Up: "
INPUT MatchcodeName

CALL mc.FindMatchcode WITH MatchcodeName RETURNING errorCode

IF errorCode IS NOT 1 THEN
PRINT "Matchcode can not be OPENED: " + errorCode
END ROUTINE

END IF

Step 3: Begin cycling through
every component in the matchcode
Use the GetMatchcodeItemCount function, determine how many components are
present in the current matchcode.

FOR MatchcodeItem = 1 TO mc.GetMatchcodeItemCount
CALL mc.GetMatchcodeItem with MatchcodeItem RETURNING mcComp

Step 4: Retrieve the component settings
Begin calling the MatchcodeComponent functions to return the settings for each
matchcode.

CALL mcComp.GetLabel RETURNING Label
IF LABEL IS NOT EMPTY THEN PRINT LABEL
CALL mcComp->GetComponentType RETURNING ComponentTypeName
CASE ComponentTypeName OF

1: Type = "Prefix"
2: Type = "First"
3: Type = "Middle"
4: Type = "Last"
5: Type = "Suffix"
6: Type = "Gender"
7: Type = "FirstNickname"
8: Type = "MiddleNickname"
9: Type = "Title"
10: Type = "Company"
11: Type = "CompanyAcronym"
112

Reference Guide Matchcode Interface
12: Type = "StreetNumber"
13: Type = "StreetPreDir"
14: Type = "StreetName"
15: Type = "StreetSuffix"
16: Type = "StreetPostDir"
17: Type = "POBox"

This is an incomplete list, but with a separate case for each component type, the program
determines the component type and displays the name.

Other: Type = "UNDETERMINED"
ENDCASE
PRINT "Type:" + Type

Retrieve and display the size of the current component.

CALL mcComp->GetSize RETURNING Size : Print "Size: " + Size

Repeat the same basic procedure for the Component starting position.

CALL mcComp->GetStart RETURNING ComponentStart
CASE OF ComponentStart

0x08: Start = "Left"
0x10: Start = "Right"
0x20: Start = "Pos:"
0x40: Start = "Word:"

Other: Start = "UNKNOWN"
ENDCASE
PRINT "Start: " + Start

Repeat again for the fuzzy matching rule for the current component. The following is an
incomplete list.

CALL mcComp->GetFuzzy RETURNING ComponentFuzzy
CASE OF ComponentFuzzy

0x0000 : Fuzzy = "Exact"
0x0001 : Fuzzy = "SoundEx"
0x0002 : Fuzzy = "Phonetex"
0x0004 : Fuzzy = "Containment"
0x0008 : Fuzzy = "Frequency"
0x0010 : Fuzzy = "FastNear"
0x0020 : Fuzzy = "AccrNear"
0x0040 : Fuzzy = "Vowels"
0x0080 : Fuzzy = "Consonants"
0x0100 : Fuzzy = "Alphas"
0x0200 : Fuzzy = "Numerics"
0x0400 : Fuzzy = "FreqNear"
Other: Fuzzy = "UNKNOWN"

ENDCASE
PRINT "Fuzzy Matching: " + Fuzzy

Repeat again for the blank field matching rules.
113

Matchcode Interface MatchUp Object
Call mcComp->GetFieldMatch RETURNING ComponentField
CASE OF ComponentField

0: FieldMatch = "NO Blank"
0x0100: FieldMatch = "BothBlank"
0x0200: FieldMatch = "OneBlank"
0x0400: FieldMatch = "Initial"
0x0300: FieldMatch = "Both/One"
0x0500: FieldMatch = "Both/Init"
0x0600: FieldMatch = "Init/One"
0x0700: FieldMatch = "Both/One/Init"
Other: FieldMatch = "UNKNOWN"

ENDCASE
PRINT "Blank Field Matching: " + Field

The process for getting the information about which combinations the component
belongs to is somewhat more complicated. It involves using a logic AND operation to
compare the value returned by the GetCombination function to each of the possible
values shown in the table on page 147.

CALL mcComp->GetCombination RETURNING ComponentCombos

SET CombinationsList to empty string

IF ComponentCombos AND 0x0001 THEN
Concatenate "1" TO CombinationsList

ELSE
Concatenate "." TO CombinationsList

END IF

IF ComponentCombos AND 0x0002 THEN
Concatenate "2" TO CombinationsList

ELSE
Concatenate "." TO CombinationsList

END IF

IF ComponentCombos AND 0x0004 THEN
Concatenate "3" TO CombinationsList

ELSE
Concatenate "." TO CombinationsList

END IF

This snippet of code adds a digit for each combination that uses the component.
Otherwise, it adds a period to represent a blank. Repeat the above structure for each
possible value from the table on page 147.

IF ComponentCombos AND 0x8000 THEN
Concatenate "F" TO CombinationsList

ELSE
Concatenate "." TO CombinationsList
114

Reference Guide Matchcode Interface
END IF

PRINT "This component is used for these combinations: " +
CombinationsList

Repeat for each component in the matchcode.

ENDFOR

Matchcode Mapping Information
In addition to information about the components used by a matchcode, the Matchcode
Interface can also return information about the required mapping for each matchcode.
These can be different from the Component mapping types because the component type
tells you the data type which will be used to match records, while the matchcode mapping
tells the API the format of the incoming data.

One use for this would be for an application to retrieve the information from a matchcode
and dynamically create the mappings based on that information.

Use the SetMatchcodeObject function instead of the SetMatchcodeName function to set
the matchcode used by the deduper.

The following illustrates a few of the many possible matchcode mappings required by a
respective component type.

CASE MatchCode.ComponentType.PrefixType: CALL mdMU.AddMapping WITH
mm.FullName

CASE MatchCode.ComponentType.FirstType: CALL mdMU.AddMapping WITH
mm.FullName

CASE MatchCode.ComponentType.LastType: CALL mdMU.AddMapping WITH
mm.FullName

CASE MatchCode.ComponentType.SuffixType: CALL mdMU.AddMapping WITH
mm.FullName

CASE MatchCode.ComponentType.FirstNicknameType: CALL mdMU.AddMapping
WITH mm.FullName

Keep in mind that these are not all the matchcode mapping targets. For a full list of these
targets, see “MatchcodeMappingTarget” on page 149. If a matchcode contains
component types that can not be extracted from the database you want to process, that
matchcode should not be used for that process.
115

Matchcode Interface MatchUp Object
Matchcode Interface Functions
The following is a master list of the functions in the Matchcode Interface.

Initialize MatchUp Object
Initializing the Matchcode Interface is simpler than the other interfaces, since no license
string is required.

SetPathToMatchUpFiles . 118
InitializeDataFiles . 119
GetInitializeErrorString . 120

Create a New Matchcode
The single function in this section, part of the Matchcode class, creates a new, blank
matchcode that can be populated with matchcode components and saved to the current
matchcode file.

CreateNewMatchcode . 120

Retrieve Existing Matchcodes
These functions are used to retrieve a specific matchcode from the matchcode file.

FindMatchcode . 121
GetMatchcodeName . 122

General Matchcode Properties
These functions help with defining various Matchcode properties.

GetDescription . 122
SetDescription . 122
GetNGram . 123
SetNGram . 123

Read Matchcode Component Information
The functions in this section retrieve the number of components in a given matchcode and
retrieve the contents of a specific matchcode component.

GetMatchcodeItemCount . 124
GetMatchcodeItem . 124
116

Reference Guide Matchcode Interface
Get Mapping Information
Mapping information is different from component information, revealing the order and
mapping types that should be used when creating the mappings in any one of the deduper
interfaces.

GetMappingItemCount . 124
GetMappingItemType . 125
GetMappingItemLabel . 125

Change Matchcode Component Settings
The functions in the section set the values for the various settings of a matchcode
component object. They can be used to construct new matchcode components when
adding them to a matchcode or to change the settings of an existing component. Every
function in this section requires a variable based on the mdMatchcodeComponent class.

SetComponentType . 126
SetSize . 126
SetLabel . 127
SetWordCount . 127
SetStart . 127
SetStartPos . 128
SetTrim . 129
SetFuzzy . 129
SetNear . 130
SetNearDbl . 131
SetFieldMatch . 131
SetCombination . 132
SetSwap . 133

Read Matchcode Component Settings
The following functions read and return the settings from a specific matchcode
component variable.

GetComponentType . 134
GetSize . 134
GetLabel . 135
GetWordCount . 135
GetStart . 136
GetStartPos . 137
GetTrim . 137
GetFuzzy . 138
GetNear . 138
117

Matchcode Interface MatchUp Object
GetNearDbl . 139
GetFieldMatch . 139
GetCombination . 140
GetSwap . 141

Add, Modify or Delete Matchcode Components
The functions in this section add, insert, update, or delete matchcode components from
the current Matchcode object.

AddMatchcodeItem . 142
InsertMatchcodeItem . 143
ChangeMatchcodeItem . 144
DeleteMatchcodeItem . 145

Save Changes to the Matchcode File
The functions in this section save changes to the current matchcode file, either back to the
original default file or to a new file.

Save . 145
SaveToFile . 146
RenameMatchcode . 146
DeleteMatchcode . 146

Initialize MatchUp Object
Initializing the Matchcode Interface is simpler than the other interfaces, since no license
string is required.

SetPathToMatchUpFiles
String value. This function accepts a string value indicating the file path to the folder
containing the MatchUp Object files. This function must be called before calling the
InitializeDataFiles function.

To provide maximum compatibility with Windows, three files are installed in your
‘Common App Data’ directory. For Windows Vista and Windows 7 the default location is
“C:\ProgramData\MelissaDATA\MatchUp.” For Windows XP the default location is
“C:\Documents and Settings\All Users\Application Data\Melissa DATA\MatchUp.”
118

Reference Guide Matchcode Interface
The location of this directory can be changed by users so please note this, as it can often be
the source of issues when running the samples/demos.

InitializeDataFiles
The InitializeDataFiles method opens the needed data files and prepares the MatchUp
Object for use.

Before calling this method, you must have successfully called SetPathToMatchUpFiles
function.

Check the return value of the GetInitializeErrorString method to retrieve the result of the
initialization call. Any result other than “No Error” means the initialization failed for
some reason.

Return Value

Returns a value of the enumerated type ProgramStatus.

If any other value other than NoError is returned, check the GetInitializeErrorString
method to see the reason for the error.

Syntax

mdMC->SetPathToMatchUpFiles(char)

C

mdMUMatchcodeSetPathToMatchUpFiles(mdMC, char)

COM+/.NET

mdMC.PathToMatchUpFiles = string

Value Reason

0 ErrorNone No error - initialization was successful.

5 ErrorMatchcodeNotFound Specified Matchcode does not exist.

Syntax

ProgramStatus = mdMC->InitializeDataFiles()

C

ProgramStatus = mdMUMatchcodeInitializeDataFiles(mdMC)

COM+/.NET

ProgramStatus = mdMC.InitializeDataFiles
119

Matchcode Interface MatchUp Object
GetInitializeErrorString
Returns a descriptive string to describe the error from the InitializeDataFiles function.
The possible strings returned by this method are:

No Error

Could not open mdName.dat

Matchcode not found

Return Value

The GetInitializeErrorString function returns a string describing the error caused
when the InitializeDataFiles function cannot be called successfully.

Create a New Matchcode
The single function in this section, part of the Matchcode class, creates a new, blank
matchcode that can be populated with matchcode components and saved to the current
matchcode file.

CreateNewMatchcode
This function creates a new, blank matchcode, represented by the current instance of the
Matchcode class.

This function accepts a single character string, the name for the newly created matchcode.
This name must be unique. It cannot be used for another matchcode in the same
matchcode file.

Syntax

char = mdMC->GetInitializeErrorString()

C

char = mdMUMatchcodeGetInitializeErrorString(mdMC)

COM+/.NET

string = mdMC.GetInitializeErrorString
120

Reference Guide Matchcode Interface
If the function successfully creates a new matchcode, it returns a non-zero integer value.
A zero value means that there was an error, most likely because the matchcode name was
already in use.

Retrieve Existing Matchcodes
These functions are used to retrieve a specific matchcode from the matchcode file.

FindMatchcode
This function populates the current instance of the Matchcode object with the settings of
the matchcode specified in the character string passed to the function. It accepts a single
character string as its input parameter. This must be the name of an existing matchcode in
the current matchcode file.

If the matchcode name is valid (represents an existing matchcode), this function returns an
integer value of 1.

Syntax

int = mdMC->CreateNewMatchcode(MatchcodeName)

C

int = mdMUMatchcodeCreateNewMatchcode(mdMC, MatchcodeName)

COM+/.NET

integer = mdMC.CreateNewMatchcode (MatchcodeName)

Syntax

int = mdMC->FindMatchcode(MatchcodeName)

C

int = mdMUMatchcodeFindMatchcode(mdMC, MatchcodeName)

COM+/.NET

integer = mdMC.FindMatchcode(MatchcodeName)
121

Matchcode Interface MatchUp Object
GetMatchcodeName
This function returns a string value containing the name of the current matchcode,
assuming one has been loaded via the FindMatchcode function or created with the
CreateNewMatchcode function.

General Matchcode Properties
These functions help with defining various Matchcode properties.

GetDescription
Retrieves a matchcode’s user-specified description associated with this matchcode.

SetDescription
Allows the user to assign a description to the matchcode.

For example, it may describe what the matchcode evaluates or the type of process the
matchcode is used in. When viewing the matchcode in the matchcode editor, the
description will be present along with the actual properties of the matchcode.

Syntax

char = mdMC->GetMatchcodeName()

C

char = mdMUMatchcodeGetMatchcodeName(mdMC)

COM+/.NET

string = mdMC.MatchcodeName

Syntax

StringValue =mdMC->GetDescription()

C

StringValue = mdMUMatchcodeGetDescription(mdMUMatchcode)

COM+/.NET

StringValue = mdMC.Description

Syntax

mdMC->SetDescription(StringValue)

C

mdMUMatchcodeSetDescription(mdMUMatchcode, StringValue)

COM+/.NET

mdMC.Description = StringValue
122

Reference Guide Matchcode Interface
GetNGram
Retrieves a matchcode’s N-gram setting.

Since a matchcode may contain multiple components each using a different fuzzy
algorithm, many of which require an N-gram setting, the N-gram setting is applied to all
relevant components. In other words, the N-gram is set at the matchcode level, not the
component level.

SetNGram
Sets a matchcode’s N-gram setting.

Since a matchcode may contain multiple components each using a different fuzzy
algorithm, many of which require an N-gram setting, the N-gram setting is applied to all
relevant components. In other words, the N-gram is set at the matchcode level, not the
component level.

Read Matchcode
Component Information
The functions in this section retrieve the number of components in a given matchcode and
retrieve the contents of a specific matchcode component.

Syntax

integer = mdMC->GetNGram()

C

integer = mdMUMatchcodeGetNGram(mdMUMatchcode)

COM+/.NET

integer = mdMC.NGram

Syntax

mdMC->SetNGram(integer)

C

mdMUMatchcodeSetNGram(mdMUMatchcode, integer)

COM+/.NET

mdMC.NGram = integer
123

Matchcode Interface MatchUp Object
GetMatchcodeItemCount
This function returns the number of components in the current Matchcode object. The
return value is an integer indicating the number of MatchcodeComponent objects in the
current Matchcode object.

GetMatchcodeItem
This function returns the MatchcodeComponent object located at the position indicated
by the integer value passed to the function.

Get Mapping Information
Mapping information is different from component information, revealing the order and
mapping types that should be used when creating the mappings in any one of the deduper
interfaces.

GetMappingItemCount
This function returns an integer value showing the number of mappings required for the
current matchcode.

Mapping items differ from matchcode components, mostly in how street address lines are
represented. Components include the individual address components that are used to
construct the match key, such as street number and street name.

Syntax

int = mdMC->GetMatchcodeItemCount()

C

int = mdMUMatchcodeGetMatchcodeItemCount(mdMC)

COM+/.NET

integer = mdMC.MatchcodeItemCount

Syntax

MatchcodeComponent = mdMC->GetMatchcodeItem(int)

C

mdMUMatchcodeComponent =
mdMUMatchcodeGetMatchcodeItem(mdMC, int)

COM+/.NET

MatchcodeComponent = mdMC.MatchcodeItem(integer)
124

Reference Guide Matchcode Interface
The same components are represented by the mapping items for address lines (address1,
address2 and address3). No matter what order the components appear in the matchcode,
the address lines mapping items appear at the end of the list of mapping items.

GetMappingItemType
This function returns the specific type of a mapping item specified by an integer value.

For a complete list of these values, see “MatchcodeMappingTarget” on page 149.

The return value is a variable of type MatchcodeMappingTarget that indicates the type of
mapping item found at the position indicated by the integer value passed to the function.

GetMappingItemLabel
This function returns a character string containing the label, if any, of the mapping item
specified by an integer value.

If the specified mapping item does not have a label, this function returns the name of the
mapping item type.

Syntax

int = mdMC->GetMappingItemCount()

C

int = mdMUMatchcodeGetMappingItemCount(mdMC)

COM+/.NET

integer = mdMC.MappingItemCount

Syntax

MatchcodeMappingTarget = mdMC->GetMappingItemType(int)

C

mdMUMatchcodeMappingTarget =
mdMUMatchcodeGetMappingItemType (mdMC, int)

COM+/.NET

MatchcodeMappingTarget = mdMC.MappingItemType(integer)

Syntax

char = mdMC->GetMappingItemLabel(int)

C

char= mdMUMatchcodeGetMappingItemLabel(mdMC, int)

COM+/.NET

string = mdMC.MappingItemLabel(integer)
125

Matchcode Interface MatchUp Object
Change Matchcode Component Settings
The functions in this section set the values for the various settings of a matchcode
component object. They can be used to construct new matchcode components when
adding them to a matchcode, or to change the settings of an existing component. Every
function in this section requires a variable based on the mdMatchcodeComponent class.

SetComponentType
This function specifies the type for the current MatchcodeComponent object.

The only parameter for this function is an enumerated value of the type
MatchcodeComponentType. A chart showing all possible values for this enumeration
appears on page 150.

SetSize
This function sets how many characters from the source data will be used by the current
MatchcodeComponent.

This integer value sets the number of characters that this component will use from the
related field from each record. If the field is longer than this value, the data will be
truncated. If the field is shorter, it will be padded with spaces.

Size is only applied to a piece of data after all other component properties have been
considered.

Syntax

mdMCC->SetComponentType(MatchcodeComponentType)

C

mdMUMatchcodeComponentSetComponentType(mdMCC,
mdMUMatchcodeComponentType)

COM+/.NET

mdMCC.ComponentType = MatchcodeComponentType

Syntax

mdMCC->SetSize(int)

C

mdMUMatchcodeComponentSetSize(mdMCC, int)

COM+/.NET

mdMCC.Size = integer
126

Reference Guide Matchcode Interface
SetLabel
This function assigns a label to the current MatchcodeComponent object.

Not all components accept a label. For example, none of the street address components
(Street number, street name and so on) can have a label since they are not used for
mapping.

Components that are not assigned a label will return the name of their component type. If
a label is passed to a component that cannot use one, the component will ignore it.

SetWordCount
This function sets the maximum number of words used by the current
MatchcodeComponent object.

The maximum number of words offers further control over the amount of data used by
each component. If this function is set to 1, then MatchUp Object will take every
character up to, but not including, the first space.

If the first word is shorter than the value passed to the SetSize function, the data will still
be truncated at that character, regardless of the setting from this function.

SetStart
This function sets the starting point used by the current MatchcodeComponent object,
Left, Right, Character or Word. It controls where MatchUp Object starts counting when
applying the component size and accepts an enumerated value of the type
MatchcodeStart.

Syntax

mdMCC->SetLabel(char)

C

mdMUMatchcodeComponentSetLabel(mdMCC, char)

COM+/.NET

mdMCC.Label = string

Syntax

mdMCC->SetWordCount(int)

C

mdMUMatchcodeComponentSetWordCount(mdMCC, int)

COM+/.NET

mdMCC.WordCount = integer
127

Matchcode Interface MatchUp Object
If the selected value is either StartAtPos or StartAtWord, the application will need to call
the SetStartPos function.

SetStartPos
This function sets the specific character position or word used as the starting point, when
StartAtPos or StartAtWord are passed to the SetStart function.

This function is required if the selection from the SetStart function is either StartAtPos or
StartAtWord.

It sets either the character position or the word where MatchUp Object starts counting
when adding a field to a match key.

For example, if the value passed to SetStartPos is 2 and the SetStart function is set to
StartAtWord, MatchUp Object will start at the second word.

Name Value Description

Left 0x08 The default. MatchUp Object starts counting from the

beginning of the field.

Right 0x10 MatchUp Object starts counting backwards from the

end of the field.

StartAtPos 0x20 MatchUp Object starts counting from the character
position indicated by the SetStartPos function.

StartAtWord 0x40 MatchUp Object starts counting from the word

indicated by the SetStartPos function.

Syntax

mdMCC->SetStart(MatchcodeStart)

C

mdMUMatchcodeComponentSetStart(mdMCC, mdMUMatchcodeStart)

COM+/.NET

mdMCC.Start = MatchcodeStart

Syntax

mdMCC->SetStartPos(int)

C

mdMUMatchcodeComponentSetStartPos(mdMCC, int)

COM+/.NET

mdMCC.StartPos = integer
128

Reference Guide Matchcode Interface
SetTrim
This function enables or disables trimming of blank spaces from the beginning or end of
field data through an enumerated value of the type MatchcodeTrim.

For most applications, this function will be set to All Trim, which trims excess blank
spaces from both the start and end of a field before adding to a match key.

SetFuzzy
The function selects the matching algorithm used when comparing this

MatchcodeComponent. It accepts an enumerated value of the type MatchcodeFuzzy.

Name Value

LeftTrim 0x02

RightTrim 0x04

AllTrim 0x06

Syntax

mdMCC->SetTrim(MatchcodeTrim)

C

mdMUMatchcodeComponentSetTrim(mdMCC, mdMUMatchcodeTrim)

COM+/.NET

mdMCC.Trim = MatchcodeTrim

Name Value Name Value

Exact 0x0000 NGram 0x0800

SoundEx 0x0001 Jaro 0x1000

Phonetex 0x0002 JaroWinkler 0x2000

Containment 0x0004 LCS 0x4000

Frequency 0x0008 NeedlemanWunsch 0x8000

FastNear 0x0010 MDKeyboard 0x10000

AccurateNear 0x0020 SmithWatermanGotoh 0x20000

VowelsOnly 0x0040 Dice 0x40000
129

Matchcode Interface MatchUp Object
For a detailed explanation of the various matching strategies, see the section beginning on
page 11.

SetNear
This function sets the degree of precision used when the SetFuzzy function is set to Fast
Near, Accurate Near, or Frequency Near.

The integer value from 1 to 4 sets how many differences are allowed before two keys are
no longer considered a match when one of the Near matching strategies is selected with
the SetFuzzy function.

ConsonantsOnly 0x0080 Jaccard 0x80000

AlphasOnly 0x0100 Overlap 0x100000

NumericsOnly 0x0200 DoubleMetaphone 0x200000

FrequencyNear 0x0400

Syntax

mdMCC->SetFuzzy(MatchcodeFuzzy)

C

mdMUMatchcodeComponentSetFuzzy(mdMCC, mdMUMatchcodeFuzzy)

COM+/.NET

mdMCC.Fuzzy = MatchcodeFuzzy

Syntax

mdMCC->SetNear(int)

C

mdMUMatchcodeComponentSetNear(mdMCC, int)

COM+/.NET

mdMCC.Near = integer

Name Value Name Value
130

Reference Guide Matchcode Interface
SetNearDbl
This function sets the minimum percentage of similarity which will return a match
between two strings when the SetFuzzy function is set to Proximity, N-Gram, Jaro, Jaro
Winkler, LCS, Needleman, MDKeyboard, Smith Waterman, Dice's Coefficient, Jaccard,
Overlap Coefficient, or DoubleMetaphone algorithm.

The double value from 100 to 0 sets the minimum threshold percent similarity between
two keys which will be considered a match when one of the NearDbl matching strategies
is selected with the SetFuzzy function.

SetFieldMatch
This function determines how MatchUp Object handles blank or partial fields when
applying a matchcode. It accepts an enumerated value of the type MatchcodeFieldMatch.

These selections are not mutually exclusive. In order to select more than one, you will need
to use a logical OR operation to combine multiple options and pass that value to the
function.

Some languages, such as C++, do not easily handle using logical operation on
enumerations. In these cases, it may be necessary to cast the enumerated values as integers
and then combine them using the OR operation.

When working with the first component of a matchcode, keep in mind the special rules
for first components on page 16. The first component cannot use Initial Only matching or
One Blank Field matching.

Syntax

mdMCC->SetNearDbl(double)

C

mdMUMatchcodeComponentSetNearDbl
(mdMUMatchcodeComponent, double)

COM+/.NET

mdMCC.NearDbl(double)

Name Value

NoFieldMatch 0x0000

BothBlankMatch 0x0100

OneBlankMatch 0x0200

InitialMatch 0x0400
131

Matchcode Interface MatchUp Object
For details on the different types of blank or partial field matching, see page 14.

SetCombination
This function selects which combinations in the current matchcode will use this
component. It accepts an enumerated value of the type MatchcodeCombination.

These selections are not mutually exclusive. In order to select more than one, you will need
to use a logical OR operation to combine multiple options and pass that value to the
function.

Syntax

mdMCC->SetFieldMatch(MatchcodeFieldMatch)

C

mdMUMatchcodeComponentSetFieldMatch(mdMCC,
mdMUMatchcodeFieldMatch)

COM+/.NET

mdMCC.FieldMatch = MatchcodeFieldMatch

Name Value Name Value

Combo1 0x0001 Combo9 0x0100

Combo2 0x0002 Combo10 0x0200

Combo3 0x0004 Combo11 0x0400

Combo4 0x0008 Combo12 0x0800

Combo5 0x0010 Combo13 0x1000

Combo6 0x0020 Combo14 0x2000

Combo7 0x0040 Combo15 0x4000

Combo8 0x0080 Combo16 0x8000
132

Reference Guide Matchcode Interface
Some languages, such as C++, do not easily handle using logical operation on
enumerations. In these cases, it may be necessary to cast the enumerated values as integers
and then combine them using the OR operation.

SetSwap
This function selects the swap pair or swap pairs to which this MatchcodeComponent
object belongs and accepts an enumerated value of the type MatchcodeSwap.

These selections are not mutually exclusive. In order to select more than one, you will need
to use a logical OR operation to combine multiple options and pass that value to the
function.

Syntax

mdMCC->SetCombination(MatchcodeCombination)

C

mdMUMatchcodeComponentSetCombination(mdMCC,
mdMUMatchcodeCombination)

COM+/.NET

mdMCC.Combination = MatchcodeCombination

Name Value

NoSwap 0x00

SwapA 0x01

SwapB 0x02

SwapC 0x04

SwapD 0x08

SwapE 0x10

SwapF 0x20

SwapG 0x40

SwapH 0x80
133

Matchcode Interface MatchUp Object
Some languages, such as C++, do not easily handle using logical operation on
enumerations. In these cases, it may be necessary to cast the enumerated values as integers
and then combine them using the OR operation.

Read Matchcode Component Settings
The following functions read and return the settings from a specific matchcode
component variable.

GetComponentType
This function returns the component type of the current MatchcodeComponent object.

The return value for this function is an enumerated value of the type
MatchcodeComponentType. A chart showing all possible values for this enumeration
appears on page 150.

GetSize
This function returns how many characters from the source data will be used by the
current MatchcodeComponent.

This integer value shows the number of characters that this component will use from the
related field from each record. If the field is longer than this value, the data will be
truncated. If the field is shorter, it will be padded with spaces.

Syntax

mdMCC->SetSwap(MatchcodeSwap)

C

mdMUMatchcodeComponentSetSwap(mdMCC, mdMUMatchcodeSwap)

COM+/.NET

mdMCC.Swap = MatchcodeSwap

Syntax

MatchcodeComponentType = mdMCC->GetComponentType()

C

mdMUMatchcodeComponentType=
mdMUMatchcodeComponentGetComponentType(mdMCC)

COM+/.NET

MatchcodeComponentType = mdMCC.ComponentType
134

Reference Guide Matchcode Interface
Size is only applied to a piece of data after all other component properties have been
considered.

GetLabel
This function returns the label, if any, of the current MatchcodeComponent object.

Not all components accept a label. For example, none of the street address components
(Street number, street name, and so on) use a label because they are not used for mapping.

Components that are not assigned a label will return the name of their component type.

GetWordCount
This function returns the maximum number of words used by the current
MatchcodeComponent object.

The maximum number of words offers further control over the amount of data used by
each component. If this function is set to 1, then MatchUp Object will take every
character up to, but not including, the first space.

Syntax

int = mdMCC->GetSize()

C

int = mdMUMatchcodeComponentGetSize(mdMCC)

COM+/.NET

integer = mdMCC.Size

Syntax

char = mdMCC->GetLabel()

C

char = mdMUMatchcodeComponentGetLabel(mdMCC)

COM+/.NET

string = mdMCC.Label
135

Matchcode Interface MatchUp Object
If the first word is shorter than the value passed to the SetSize function, then the data will
still be truncated at that character, regardless of the setting returned by this function.

GetStart
This function returns an enumerated value of the type MatchcodeStart that shows where
MatchUp Object starts counting when applying the component size.

If the selected value is either StartAtPos or StartAtWord, the application will need to call
the GetStartPos function to discover what starting word or character position is being
used.

Syntax

int = mdMCC->GetWordCount()

C

int = mdMUMatchcodeComponentGetWordCount(mdMCC)

COM+/.NET

integer = mdMCC.WordCount

Name Value Description

Left 0x08 The default. MatchUp Object starts counting from
the beginning of the field.

Right 0x10 MatchUp Object starts counting backwards from

the end of the field.

StartAtPos 0x20 MatchUp Object starts counting from the character

position indicated by the SetStartPos function.

StartAtWord 0x40 MatchUp Object starts counting from the word
indicated by the SetStartPos function.

Syntax

MatchcodeStart = mdMCC->GetStart()

C

mdMUMatchcodeStart= mdMUMatchcodeComponentGetStart(mdMCC)

COM+/.NET

MatchcodeStart = mdMCC.Start
136

Reference Guide Matchcode Interface
GetStartPos
This functions returns the specific character position or word used as the starting point,
when the SetStart function is set to Position or Word.

It will return an integer value when the SetStart function has been set to either StartAtPos
or StartAtWord.

It returns either the character position or the word where MatchUp Object starts counting
when adding a field to a match key.

GetTrim
This function returns an enumerated value of the type MatchcodeTrim, showing whether
the current matchcode will trim beginning or ending spaces from the data before
performing other operations upon it.

For most applications, this function will return the value for All Trim, which trims excess
blank spaces from both the start and end of a field before adding to a match key.

Syntax

int = mdMCC->GetStartPos()

C

int = mdMUMatchcodeComponentGetStartPos(mdMCC)

COM+/.NET

integer = mdMCC.StartPos

Name Value

LeftTrim 0x02

RightTrim 0x04

AllTrim 0x06

Syntax

MatchcodeTrim = mdMCC->GetTrim()

C

mdMUMatchcodeTrim = mdMUMatchcodeComponentGetTrim(mdMCC)

COM+/.NET

MatchcodeTrim = mdMCC.Trim
137

Matchcode Interface MatchUp Object
GetFuzzy
This function returns an enumerated value of the type MatchcodeFuzzy used when
comparing this MatchcodeComponent.

For a detailed explanation of the various matching strategies, see “Matchcode Component
Properties” on page 11.

GetNear
This function returns the degree of precision used when the SetFuzzy function is set to
Fast Near, Accurate Near or Frequency Near.

Name Value Name Value

Exact 0x0000 NGram 0x0800

SoundEx 0x0001 Jaro 0x1000

Phonetex 0x0002 JaroWinkler 0x2000

Containment 0x0004 LCS 0x4000

Frequency 0x0008 NeedlemanWunsch 0x8000

FastNear 0x0010 MDKeyboard 0x10000

AccurateNear 0x0020 SmithWatermanGotoh 0x20000

VowelsOnly 0x0040 Dice 0x40000

ConsonantsOnly 0x0080 Jaccard 0x80000

AlphasOnly 0x0100 Overlap 0x100000

NumericsOnly 0x0200 DoubleMetaphone 0x200000

FrequencyNear 0x0400

Syntax

MatchcodeFuzzy = mdMCC->GetFuzzy()

C

mdMUMatchcodeFuzzy = mdMUMatchcodeComponentGetFuzzy(mdMCC)

COM+/.NET

MatchcodeFuzzy = mdMCC.Fuzzy
138

Reference Guide Matchcode Interface
The integer value from 1 to 4 shows how many differences are allowed before two keys are
no longer considered a match when one of the Near matching strategies is selected with
the SetFuzzy function.

GetNearDbl
This function returns the minimum percentage of similarity which will return a match
between two strings when the SetFuzzy function is set to Proximity, N-Gram, Jaro, Jaro
Winkler, LCS, Needleman, MDKeyboard, Smith Waterman, Dice's Coefficient, Jaccard,
Overlap Coefficient, or DoubleMetaphone algorithm.

The double value from 100 to 0 shows the minimum threshold percent similarity between
two keys which will be considered a match when one of the NearDbl matching strategies
is selected with the SetFuzzy function.

GetFieldMatch
This function returns an enumerated value of the type MatchcodeFieldMatch, which
determines how MatchUp Object handles blank or partial fields when applying a
matchcode.

Syntax

int mdMCC->GetNear()

C

int = mdMUMatchcodeComponentGetNear(mdMCC)

COM+/.NET

integer = mdMCC.Near

Syntax

double = mdMCC->GetNearDbl()

C

double = mdMUMatchcodeComponentGetNearDbl
(mdMUMatchcodeComponent)

COM+/.NET

double = mdMCC.NearDbl

Name Value

NoFieldMatch 0x0000

BothBlankMatch 0x0100

OneBlankMatch 0x0200
139

Matchcode Interface MatchUp Object
These selections are not mutually exclusive. In order to determine which settings are being
used, you will need to use a logical AND operation to check the return value against each
of the above values.

Some languages, such as C++, do not easily handle using logical operation on
enumerations. In these cases, it may be necessary to cast the return values as an integer
before using the AND operation to check the values.

For details on the different types of blank or partial field matching, see page 14.

GetCombination
This function shows which combinations in the current matchcode will use this
component. It returns an enumerated value of the type MatchcodeCombination.

InitialMatch 0x0400

Syntax

MatchcodeFieldMatch = mdMCC->GetFieldMatch()

C

mdMUMatchcodeFieldMatch =
mdMUMatchcodeComponentGetFieldMatch(mdMCC)

COM+/.NET

MatchcodeFieldMatch = mdMCC.FieldMatch

Name Value Name Value

Combo1 0x0001 Combo9 0x0100

Combo2 0x0002 Combo10 0x0200

Combo3 0x0004 Combo11 0x0400

Combo4 0x0008 Combo12 0x0800

Combo5 0x0010 Combo13 0x1000

Combo6 0x0020 Combo14 0x2000

Combo7 0x0040 Combo15 0x4000

Combo8 0x0080 Combo16 0x8000

Name Value
140

Reference Guide Matchcode Interface
These selections are not mutually exclusive. In order to determine which settings are being
used, you will need to use a logical AND operation to check the return value against each
of the above values.

Some languages, such as C++, do not easily handle using logical operation on
enumerations. In these cases, it may be necessary to cast the return values as an integer
before using the AND operation to check the values.

GetSwap
This function shows which swap pairs in the current matchcode will use this component.
It accepts an enumerated value of the type MatchcodeSwap.

These selections are not mutually exclusive. In order to determine which settings are being
used, you will need to use a logical AND operation to check the return value against each
of the above values.

Syntax

MatchcodeCombination = mdMCC->GetCombination()

C

mdMUMatchcodeCombination =
mdMUMatchcodeComponentGetCombination(mdMCC)

COM+/.NET

MatchcodeCombination = mdMCC.Combination

Name Value

NoSwap 0x00

SwapA 0x01

SwapB 0x02

SwapC 0x04

SwapD 0x08

SwapE 0x10

SwapF 0x20

SwapG 0x40

SwapH 0x80
141

Matchcode Interface MatchUp Object
Some languages, such as C++, do not easily handle using logical operation on
enumerations. In these cases, it may be necessary to cast the return values as an integer
before using the AND operation to check the values.

Add, Modify or Delete
Matchcode Components
The functions in this section add, insert, update, or delete matchcode components from
the current Matchcode object.

AddMatchcodeItem
This function adds a MatchcodeComponent object to the current Matchcode.

The AddMatchcodeItem function accepts a MatchcodeComponent object as its only
argument and adds this component as the last component for this matchcode.

To add a component at any position other than the last component, use the
InsertMatchcodeItem function instead. To modify an existing matchcode, use the
ChangeMatchcodeItem function.

This function returns an enumerated value of the type MatchcodeStatus that indicates if
the component was successfully added to the matchcode and, if not, the reason for the
error.

Syntax

MatchcodeSwap = mdMCC->GetSwap()

C

mdMUMatchcodeSwap = mdMUMatchcodeComponentGetSwap(mdMCC)

COM+/.NET

MatchcodeSwap = mdMCC.Swap

Name Value

MCNoError 0

MCFirstComponentFuzzyOptions 1

MCFirstComponentNoSwapPair 2

MCDataTypeNoFuzzy 3

MCComponentFuzzyIncorrectSize 4
142

Reference Guide Matchcode Interface
InsertMatchcodeItem
This function adds a MatchcodeComponent to a specific position in the component order
of the current Matchcode object.

Use this function to add a new MatchcodeComponent object to the current matchcode in
any position other than the very last. The InsertMatchcodeItem function accepts two
arguments, the MatchcodeComponent object to be added and an integer value indicating
the position where the component is to be inserted. The integer value can be from one to
the number of components currently stored in the current Matchcode object.

MCDataTypeNoMaximumNumberWords 5

MCDataTypeNoStartRightOrWordOrPos 6

MCIncorrectMaximumNumberWords 7

MCNearOutOfRange 8

MCFirstComponentNotUsedInEveryCondition 9

MCCannotChangeFirstComponent 10

MCInvalidSwapPair 11

Syntax

MatchcodeStatus = mdMC-
>AddMatchcodeItem(MatchcodeComponent)

C

mdMUMatchcodeStatus = mdMUMatchcodeAddMatchcodeItem(mdMCC,
mdMUMatchcodeComponent)

COM+/.NET

MatchcodeStatus =
mdMC.AddMatchcodeItem(MatchcodeComponent)

Name Value
143

Matchcode Interface MatchUp Object
This function returns an enumerated value of the type MatchcodeStatus that indicates if
the component was successfully added to the matchcode and, if not, then the reason for
the error. For a list of the possible values, see the table on page 150.

ChangeMatchcodeItem
This function replaces the MatchcodeComponent object at a specific position in the
component order of the current Matchcode object.

Use this function to replace an existing MatchcodeComponent object with a modified or
new component. The ChangeMatchcodeItem function accepts two arguments: the
MatchcodeComponent object to be added; and an integer value indicating the position
where the component is to be replaced. The integer value can be from one to the number
of components currently stored in the current Matchcode object.

This function returns an enumerated value of the type MatchcodeStatus that indicates if
the component was successfully added to the matchcode and, if not, then the reason for
the error. For a list of the possible values, see the table on page 150.

Syntax

MatchcodeStatus = mdMC-
>InsertMatchcodeItem(MatchcodeComponent, int)

C

mdMUMatchcodeStatus =
mdMUMatchcodeInsertMatchcodeItem(mdMCC,
mdMUMatchcodeComponent, int)

COM+/.NET

MatchcodeStatus =
mdMC.InsertMatchcodeItem(MatchcodeComponent, integer)

Syntax

MatchcodeStatus = mdMC-
>ChangeMatchcodeItem(MatchcodeComponent, int)

C

mdMUMatchcodeStatus =
mdMUMatchcodeChangeMatchcodeItem(mdMCC,
mdMUMatchcodeComponent, int)

COM+/.NET

MatchcodeStatus =
mdMC.ChangeMatchcodeItem(MatchcodeComponent, integer)
144

Reference Guide Matchcode Interface
DeleteMatchcodeItem
Use this function to remove a specific MatchcodeComponent object from a Matchcode
object. The DeleteMatchcodeItem function accepts a single argument, the integer value
indicating the position where the component is to be deleted. The integer value can be
from one to the number of components currently stored in the current Matchcode object.

This function returns an enumerated value of the type MatchcodeStatus that indicates if
the component was successfully added to the matchcode and, if not, then the reason for
the error. For a list of the possible values, see the table on page 150.

Save Changes to the Matchcode File
The functions in this section save changes to the current matchcode file, either back to the
original default file or to a new file.

Save
Use this function to save the current matchcode to the default matchcode file used by
MatchUp Object. If an existing matchcode was edited, then that matchcode will be
overwritten with the current Matchcode object. If the current Matchcode object was
newly created using the CreateNewMatchcode function, then this matchcode will be
added to the current file.

Syntax

MatchcodeStatus = mdMC->DeleteMatchcodeItem(int)

C

mdMUMatchcodeStatus =
mdMUMatchcodeDeleteMatchcodeItem(int)

COM+/.NET

MatchcodeStatus = mdMC.DeleteMatchcodeItem(integer)

Syntax

mdMC->Save()

C

mdMUMatchcodeSave(mdMCC)

COM+/.NET

mdMC.Save
145

Matchcode Interface MatchUp Object
SaveToFile
Use this function to save the current matchcode to a new copy of the current matchcode
file in a location specified by a character string that contains a valid path to an existing
directory and valid filename.

RenameMatchcode
Allows you to change a matchcode’s name.

This function can be used when you want to edit an existing matchcode and have that new
functionality reflected in the matchcode name.

DeleteMatchcode
Delete a matchcode.

Calling this function will permanently remove the matchcode from the MatchUp
mdMatchUp.mc matchcode database.

Syntax

mdMC->SaveToFile(char)

C

mdMUMatchcodeSaveToFile(mdMCC, char)

COM+/.NET

mdMC.SaveToFile(string)

Syntax

int = mdMC->RenameMatchcode(StringValue)

C

int = mdMUMatchcodeRenameMatchcode(mdMUMatchcode,
StringValue)

COM+/.NET

int = mdMC.RenameMatchcode(StringValue)

Syntax

int = mdMC->DeleteMatchcode()

C

int = mdMUMatchcodeDeleteMatchcode(mdMUMatchcode)

COM+/.NET

int = mdMC.DeleteMatchcode()
146

Reference Guide Appendix
Appendix

Enumerations & International Deduping

Enumerations
The following section lists values for the global enumerations used by all interfaces of
MatchUp Object.

MatchcodeCombinations
This enumeration is used by the Matchcode Editor interface to set or read the
combinations for which particular field is used. These values can also be used by the
Incremental and Read/Write interfaces to determine which combinations were matched
when a duplicate record is found.

Name Hex value Decimal Value Name Hex value Decimal Value

Combo1 0x0001 1 Combo9 0x0100 256

Combo2 0x0002 2 Combo10 0x0200 512

Combo3 0x0004 4 Combo11 0x0400 1,024

Combo4 0x0008 8 Combo12 0x0800 2,048

Combo5 0x0010 16 Combo13 0x1000 4,096

Combo6 0x0020 32 Combo14 0x2000 8,192

Combo7 0x0040 64 Combo15 0x4000 16,384

Combo8 0x0080 128 Combo16 0x8000 32,768
147

Appendix MatchUp Object
MatchcodeMapping
The MatchcodeMapping enumeration is used by the AddMapping function in the
Incremental, Read/Write, and Hybrid dedupers.

Name Value Name Value

Prefix 1 CityStZip 20

Gender 2 Country 21

First 3 CanadianPostalCode 22

MixedFirst 4 UKCity 23

Middle 5 UKCounty 24

Last 6 UKPostcode 25

MixedLast 7 UKCityCountyPC 26

Suffix 8 Phone 27

FullName 9 EMail 28

InverseName 10 CreditCard 29

GovernmentInverseName 11 General 30

Title 12 Latitude 40

Company 13 Longitude 41

Address 14 Date 42

City 15 Numeric 43

State 16 Address1 250

Zip9 17 Address2 251

Zip5 18 Address2 252

Zip4 19
148

Reference Guide Appendix
MatchcodeMappingTarget
 This enumeration is used by the Matchcode Interface to read the type of mapping item
required at the position indicated by the integer value passed to the
GetMappingItemType function.

After a successful call to GetMappingItemCount, you can find the required Matchcode
Mapping for each item by calling the GetMappingItemType function, which returns an
enumerated value. This function is available because matchcodes using address
components often contain a differnet number of components than the number of required
mappings.

Name Value Name Value

 PrefixType 1 CountryType 18

 FirstType 2 CanadianPCType 19

 MiddleType 3 UKCityType 20

 LastType 4 UKCountyType 21

 SuffixType 5 UKPCType 22

 GenderType 6 PhoneType 23

 FirstNicknameType 7 EMailType 24

 MiddleNicknameType 8 CreditCardType 25

 TitleType 9 GeneralType 26

 CompanyType 10 Address1Type 28

 CompanyAcronymType 11 Address2Type 29

 AddressType 12 Address3Type 30

 CityType 13 LatitudeType 34

 StateType 14 LongitudeType 35

 Zip9Type 15 DateType 36

 Zip5Type 16 NumericType 37

 Zip4Type 17
149

Appendix MatchUp Object
MatchcodeComponentType
The MatchcodeComponentType enumeration is the only parameter of the
SetComponentType function and the return value of the GetComponentType function,
both in the Matchcode API.

Name Value Name Value

Prefix 1 Address 19

First 2 City 20

Middle 3 State 21

Last 4 Zip9 22

Suffix 5 Zip5 23

Gender 6 Zip4 24

FirstNickname 7 Country 28

MiddleNickname 8 CanadianPC 29

Title 9 UKCity 30

Company 10 UKCounty 31

CompanyAcronym 11 UKPC 32

StreetNumber 12 Phone 33

StreetPreDir 13 EMail 34

StreetName 14 CreditCard 35

StreetSuffix 15 General 36

StreetPostDir 16 GeoDistance 38

POBox 17 Date 39

Secondary 18 Numeric 40
150

Reference Guide Appendix
International Deduping Considerations
Foreign Character Translation
Foreign characters are translated into English equivalents. For example, “Ç” is converted
to “C.” All translations are based on the assumption that your data was entered with the
1252 (Windows Latin 1) code page.

Canadian Users
MatchUp recognizes Canadian provinces and postal codes. In fact, it will abbreviate
province names to their two letter abbreviation automatically.

MatchUp does handle the “QC” province abbreviation for Quebec, and “PQ” entries are
automatically changed to “QC.”

In Canada, ”5-20 Main Street” means “20 Main Street, Apt 5,” but in the US, it means ”5
Main Street, Apt 20.” When deduping, MatchUp uses the contents of the ZIP/Postal
code as a basis to determine a record's country of origin, and splits this type of address
accordingly.

When creating matchcodes for use with Canadian Postal Codes, use the Postal Code
component. However, if a database is a mix of US and Canadian records, use Zip9 as the
component type. Zip9 will not adversely affect processing of Canadian records. The goal
is to prevent the deduper from trying to extract a ZIP + 4 from a Canadian Postal Code.

United Kingdom Users
MatchUp can recognize United Kingdom Cities, Counties, and Postal codes. When
creating matchcodes for use with United Kingdom addresses, use the Postal code (UK)
component. Depending on requirements, consider using the City (UK) and County (UK)
components. The Postal code component is structured in the following format:
AADDIII, where AA is the Postal code Area (left justified), DD is the Postal code
district (right justified), and III is the Inward Code (left justified). Extra spaces and dashes
are removed as this structuring is done, so the size of this component is always 7.

Like any other matchcode component, a portion of the Postal code can always be
compared by reducing its size and/or starting at a specific position. For example, starting
at position 5 for a size of 3 will compare just the Inward code.

MatchUp’s street splitter will not split United Kingdom street addresses as well as
Canadian and US addresses. Usually, a matchcode containing a mix of split address
components and full address components is a good way to get the benefit of the street
splitter (which often does perform well), along with a full-address match for backup.
MatchUp Object includes the United Kingdom Address matchcode to be used as a
starting point to build on.
151

Appendix MatchUp Object
International Users
MatchUp was designed to work with US and Canadian addresses, and performs well with
addresses from other English speaking countries.

The main obstacle with international records is with the Street Splitter. Try doing a test
run with one of the default matchcodes. If the street splits are not working well, use the
full address when creating a matchcode instead of using the components (such as street
number, street name, etc.).

Often, users have had success when combining the full address and street splitter. For
example, here's an international version of one of the default matchcodes:

Component Size Start Fuzzy Short/Empty 1 2 3

General 10 Left No Both Empty X X X

Last Name 5 Left No Both Empty X X X

First Name 3 Left No Both Empty X X X

PO Box 10 Left No No X

Street # 4 Left No Both Empty X

Street Name 4 Left No No X

Full Address 20 Left No No X
152

	MatchUp Object
	Reference Guide

	Copyright
	Trademarks
	Melissa Data Corporation
	Dear Developer,
	Table of Contents

	Introduction to MatchUp Object
	MatchUp Object Interfaces
	Key Concepts
	Entering Your MatchUp Object License

	MatchCode List Interface
	Matchcode List Interface Functions

	Matchcodes and the Matchcode Editor
	Matchcodes
	Component Combinations
	Blank Field Matching
	Matchcode Mapping
	Optimizing Matchcodes
	Other Uses for Swap Matching

	Using MatchUp Object with Non-U.S. Addresses
	The Matchcode Editor
	Starting the Matchcode Editor
	The Matchcode Editor Interface

	Read/Write Deduping
	Read/Write Order of Operations
	Read/Write Deduping Functions
	Initialize the Read/Write Interface
	Map Database Fields
	Read Data and Build the Match Key
	Process Records
	Retrieve Dupe Data for Each Record

	Incremental Deduping
	Incremental Order of Operations
	Using the Transaction Functions

	Incremental Deduping Functions
	Initialize the Incremental Interface
	Map Database Fields
	Read Data and Build the Match Key
	Compare Record to Database
	Add New Record to Key File
	Transaction Methods

	Hybrid Deduping
	Clustering
	Key Maintenance
	Hybrid Order of Operations
	Hybrid Deduping Functions
	Initialize the Hybrid Interface
	Map Database Fields and Build Keys
	Build the Match Keys
	Compare Records
	Matchcode Interface

	Order of Operations for Creating Matchcodes
	1. Initialize the Matchcode Interface and set the data path.
	2. Create a new matchcode.
	3. Create new matchcode components.
	4. Set the options for each matchcode component.
	5. Add the components to the new matchcode.
	6. Save the changes to the matchcode file.

	Order of Operations for Reading Matchcodes
	1. Initialize the Matchcode Interface and set the data path.
	2. Retrieve the matchcode.
	3. Begin cycling through every component in the matchcode.
	4. Retrieve the component settings.

	Matchcode Mapping Information
	Matchcode Interface Functions
	Initialize MatchUp Object
	Create a New Matchcode
	Retrieve Existing Matchcodes
	General Matchcode Properties
	Read Matchcode Component Information
	Get Mapping Information
	Change Matchcode Component Settings
	Read Matchcode Component Settings
	Add, Modify or Delete Matchcode Components
	Save Changes to the Matchcode File
	Appendix

	Enumerations & International Deduping
	Enumerations
	International Deduping Considerations

