
Reference Guide

Street Search

WebSmart
Street Search

Reference Guide
Melissa Data Corporation

Copyright

Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part
of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Melissa Data Corporation.
This document and the software it describes are furnished under a license agreement, and may be
used or copied only in accordance with the terms of the license agreement.

Copyright © 2012 by Melissa Data Corporation. All rights reserved.

Information in this document is subject to change without notice. Melissa Data Corporation
assumes no responsibility or liability for any errors, omissions, or inaccuracies that may appear in this
document.

Trademarks

Street Search is a trademark of Melissa Data Corp. Windows is a registered trademark of Microsoft
Corp.

The following trademarks are owned by the United States Postal Service®: U.S. Postal Service,
United States Post Office, United States Postal Service, USPS, ZIP, ZIP Code, and ZIP + 4.

All other brands and products are trademarks of their respective holder(s).

Melissa Data Corporation

22382 Avenida Empresa
Rancho Santa Margarita, CA 92688-2112

Phone: 1-800-MELISSA (1-800-635-4772)
Fax: 949-589-5211

E-mail: info@MelissaData.com
Internet: www.MelissaData.com

For the most recent version of this document, visit
http://www.melissadata.com/

Document Code: DQTWSSSRG
Revision Number: 26102012.15

Dear Developer,

I would like to take this opportunity to thank you for your interest in Melissa Data
products and introduce you to the company.

Melissa Data has been a leading provider of data quality and address management
solutions since 1985. Our data quality software, Cloud services, and data integration
components verify, standardize, consolidate, enhance and update U.S., Canadian, and
global contact data, including addresses, phone numbers, and email addresses, for
improved communications and ROI. More than 5,000 companies rely on Melissa Data to
gain and maintain a single, accurate and trusted view of critical information assets.

This manual will guide you through the functions of our easy-to-use programming tools.
Your feedback is important to me, so please don't hesitate to email your comments or
suggestions to me at: Ray@MelissaData.com.

I look forward to hearing from you.

Best Wishes,

Raymond F. Melissa

President/CEO
i

ii

Table of Contents
Welcome to WebSmart Services... 1

An Introduction to Street Search .. 4
Street Search Options ... 5
Understanding Street Search .. 5
Adding Street Search to a Project ... 6
Submitting an XML Request.. 6
Building a REST Request.. 7

Street Search Request Object ... 8
Request Elements ... 10

Street Search Response Object .. 18
Response Object XML Format .. 39
iii

1
 Welcome to WebSmart
Services
The WebSmart Services are a collection of services that can be accessed by
any application, allowing you to incorporate Melissa Data’s technology into
your programs without worrying about continually downloading and installing
updates.

Melissa Data currently offers the following services:

• Address Verifier — Verify and standardize one or more mailing
address. This service also appends ZIP + 4® and Carrier Route
information.

• Email Verifier — Verify, correct and update, domain names from one
or more email addresses.

• GeoCoder — Returns geographic, census, and demographic data for
almost any location in the United States. Uses multisource data to
return latitude and longitude down to rooftop accuracy of over 95% of
all physical addresses in the United States.

• IP Locator — Returns name and geographic information for the
owner of a public IP address.

• Delivery Indicator — Indicates whether an address represents a
business or residential address.

• Name Parser — Parses and genderizes personal names and also
generates salutations for correspondence.
1

 Chapter 1
Welcome to WebSmart Services

2

• Street Search — Searches a ZIP Code™ from street address ranges
matching a specific pattern and, optionally, a street number.

• ZIP Search — Matches city names with ZIP/Postal codes, ZIP/Postal
codes with city names and searches for city names matching a
pattern with a given state.

• Phone Verifier — Verifies and parses phone numbers, as well as
identifying phone numbers as residential, business, VOIP or wireless.

• Property — Returns basic or detailed information about the size,
ownership, and structures on a given parcel of land.

Both GeoCoder and Delivery Indicator work from an “address key” returned
by the Address Verifier service, therefore, an address must first be submitted
to the Address Verifier before you can use either of the other two services.

There are three ways to access the WebSmart Services:

• SOAP — The SOAP interface allows you to add the Web Service to
an application as if it were a component object or DLL. You can then
access the Web Service elements and execute commands as if they
were properties and methods.

• XML — The Web Service can also submit a request as an XML
document. It will then return the processed records as another XML
document that can be parsed using whatever XML tools you utilize in
your development environment.

• REST — This interface allows you to submit a single address record
as part of a URL string and returns the processed record as an XML
document identical to the one returned by the XML interface.

Using the REST service may require that you encode certain characters using
the proper URL entities before adding them to a URL. Characters like spaces,
slashes, ampersands and others must be replaced by special codes, which
usually consist of a percent sign followed by a two-digit hexadecimal number.

The following table shows the replacements for the most common characters.

Character URL Encoded

Space %20 or +

* %2A

%23

& %26

% %25

 Chapter 1
Welcome to WebSmart Services

3

Many modern programming languages have a URL encode and URL
decoding function that automates these character replacements.

Special Characters
Because the WebSmart Services are XML-based, certain characters cannot
be passed as data. They would be interpreted as part of the XML structure
and would cause errors. The following codes must be substituted for these
characters.

$ %28

+ %2B

, %2C

/ %2F

: %3A

; %3B

< %3C

= %3D

> %3E

? %3F

@ %40

[%5B

] %5D

~ %7E

Character URL Encoded

& & (ampersand)

“ " (left/right quotes should be replaced with straight quotes)

‘ ' (apostrophe)

< < (less-than)

> > (greater-than)

Character URL Encoded

2
 An Introduction to
Street Search
The Web Smart Street Search service matches a street name or just a partial
street name and returns any valid addresses that match that pattern.

Used in conjunction with the Web Smart Address Verifier, Street Search can
be used to match incorrect or misspelled street names, list possible ranges for
a street or a highrise and generate probable suggestions for end users to
select. For example, if “123 Main” matches both “123 Main St” and “123 Main
Ave” in the same ZIP Code, the Address Verifier would return a multiple
match error. Street Search can return all records that match that pattern in the
same ZIP Code, allowing you to correct a partial or inaccurate address record
that would otherwise result in an undeliverable mail piece.

The records that Street Search returns describe ranges of delivery address,
not necessarily specific individual addresses. Therefore, Street Search cannot
be used to construct address records from partial data. It can be used to verify
that a submitted address falls within a valid range of known addresses (and
thus is probably a deliverable address). Alternately, it can used to suggest
alternate spellings for a street name or possibly alternate ZIP codes within the
same city when the Address Verifier service cannot verify a submitted
address.
4

 Chapter 2
An Introduction to Street Search

5

Street Search Options
The Web Smart Street Search service has two optional settings which control
the extent of its search.

Street In Range Search
This option will search for street data records within the submitted ZIP Code,
that match the submitted street name and where the submitted street number
falls within the primary range values.

For example, if the submitted address is “1234 Main St,” in the ZIP Code
12345, assuming there is a Main St in that ZIP Code, Street Search will return
any street data records in that ZIP Code that match the name “Main St” and
where the submitted street number falls within the primary range values.
Therefore, if the low range was 1200 and the high was 1299, and the Odd or
Even indicator was either “Even” or “Both,” then the record would be a match.

Street Name Search
This option will search for street data records within the submitted ZIP Code,
that match the submitted street name.

Using the above example, Street Search would return any record that
matched “Main St.” Note that Street Search only searches on the street name,
independent of the suffix, so if there was a “Main Ave” and a “Main Blvd” in the
same ZIP Code, Street Search would return those records as well.

Understanding Street Search
If Web Smart Street Search cannot find an exact match using the submitted
data, it expands the search using the following logic.

Partial Matches
If Street Search does not find a match for the submitted street name, it will
append a wildcard character (“*”) to the submitted name and search for any
records where the beginning of the street name matches this pattern. If it still

 Chapter 2
An Introduction to Street Search

6

does not find a match, Street Search will shorten the search string by one
character and search again, continuing this process until it either finds
matching records or until it is search on only the first character of the street
name.

ZIP Code
Street Search will use the submitted ZIP Code, if present. If no valid ZIP Code
is present, then Street Search will use the submitted city and state. If no valid
ZIP Code, city or state are submitted, Street Search will return an error.

If a search of the submitted ZIP Code does not produce a match, Street
Search will expand the search to within the submitted city/state combination, if
any.

Adding Street Search to a Project
If you are using the SOAP service with Visual Studio .NET, you need to add a
web reference to the service to your project. Click on the Project menu and
select Add Web Reference... Enter the following URL on the Add Web
Reference dialog box:

https://streetsearch.melissadata.net/v2/SOAP/Service.svc

If you are not using Visual Studio .NET, see the documention for your SOAP
interface for the procedure for adding the service to your project.

Submitting an XML Request
After building your XML string from your data, an XML request to the web
service is submitted using an HTTP POST operation to the following URL:

https://streetsearch.melissadata.net/v2/XML/Service.svc/
doStreetSearch

 Chapter 2
An Introduction to Street Search

7

Building a REST Request
Query strings are sent to the webservice as part of the URL using an HTTP
Get operation appended to following URL:

https://streetsearch.melissadata.net/v2/REST/Service.svc/
doStreetSearch

3
 Street Search Request
Object
At the minimum, a request to the WebSmart Street Search service will consist
of a street address and either a ZIP Code or a combination of city and state.
Only one record is allowed per request.

SOAP Request
The following Visual Basic Code shows a simple order of operations for
building and submitting a Request object, submitting it to the Web Service
and retrieving a response object.

Step 1 – Create the Request and Response Objects
Dim ReqStreetSearch As New dqwsStreetSearch.Request
Dim ResStreetSearch As New dqwsStreetSearch.Response

Step 2 – Assign the General Request Values
There are three properties of the Request object that apply to the request as a
whole. CustomerID is required.

ReqStreetSearch.CustomerID = strCustID
ReqStreetSearch.TransmissionReference = strTranRef
ReqStreetSearch.OptInRangeOnly = True

The Transmission Reference is a unique string value that identifies this
request.
8

 Chapter 3
Street Search Request Object

9

Step 3 – Build the Record
The exact method for building the array will depend on the exact database
software in use, but you will need to assign the required values to the
corresponding elements in the Request.

ReqStreetSearch.Address = "22382 Avenida Empresa"
ReqStreetSearch.Zip = "92688"
ReqStreetSearch.City = "Rancho Santa Margarita"
ReqStreetSearch.State = "CA"

Step 4 – Submit the Request
The final step is to create the Service Client Object and then submit the
Request object doStreetSearch method. This sends the data to the web
service and retrieves the Response object.

StreetSearchClient = New dqwsStreetSearch.Service
ResStreetSearch =

StreetSearchClient.doStreetSearch(ReqStreetSearch)

XML Request
The raw XML request is built using whatever XML tools are available via your
development tools and submitted to the following URL using an HTTP POST
request:

https://streetsearch.melissadata.net/v2/XML/Service.svc/
doStreetSearch

The following XML Code contains the same request as the SOAP example
above.

<Request>
<TransmissionReference>Web Service Test 2008/12/31
</TransmissionReference>
<CustomerID>123456789</CustomerID>
<OptInRangeOnly>True</OptInRangeOnly>
<AddressLine>22382 Avenida Empresa</AddressLine>
<City>Rancho Santa Margarita</City>
<State>CA</State>
<Zip>92688</Zip>
<Country />

</Request>

 Chapter 3
Street Search Request Object

10
REST Request
A REST request can submit a single address record via an HTTP GET. The
following example uses the same address as the SOAP and XML samples.

https://streetsearch.melissadata.net/v2/REST/Service.svc/
doStreetSearch?id=12345678&opt=true&a=22382%20Avenida%
20Empresa&city=Rancho%20Santa%20Margarita&state=CA&zip
=92688

Request Elements
The following section lists the elements that set the basic options for each and
identify the user to the Web Service.

Customer ID
This is a required string value containing the identifier number issued to the
customer when signing up for Melissa Data Web Services.

Remarks
You need a customer ID to access any Melissa Data Web Service. If this
element is not populated, the web service will return an error. To receive a
customer ID, call your Melissa Data sale representative at 1-800-MELISSA.

Syntax
SOAP
Request.CustomerID = string

XML
<Request>

<CustomerID>String</CustomerID>
</Request>

REST
id={CustomerID}

 Chapter 3
Street Search Request Object

11
Transmission Reference
This is an optional string value that may be passed with each Request to
serve as a unique identifier for this set of records.

Remarks
This value is returned as sent by the Response Array, allowing you to match
the Response to the Request.

Syntax
SOAP
Request.TransmissionReference = string

XML
<Request>

<TransmissionReference>String</TransmissionReference>
</Request>

REST
t={transMissionReference}

 Chapter 3
Street Search Request Object

12
OptInRangeOnly
This element enables the Street In Range search option of the WebSmart
Street Search service.

Remarks
Setting this option to “True” will cause StreetSearch to search for street data
records within the submitted ZIP Code, that match the submitted street name
and where the submitted street number falls within the primary range values.

For example, if the submitted address is “1234 Main St,” in the ZIP Code
12345, assuming there is a Main St in that ZIP Code, Street Search will return
any street data records in that ZIP Code that match the name “Main St” and
where the submitted street number falls within the primary range values.
Therefore, if the low range was 1200 and the high was 1299, and the Odd or
Even indicator was either “Even” or “Both,” then the record would be a match.

If this element is set to “False” or left blank, StreetSearch will search for street
data records within the submitted ZIP Code, that match the submitted street
name.

Using the above example, Street Search would return any record that
matched “Main St.” Note that Street Search only searches on the street name,
independent of the suffix, so if there was a “Main Ave” and a “Main Blvd” in the
same ZIP Code, Street Search would return those records as well.

Syntax
SOAP
Request.OptInRangeOnly = string

XML
<Request>

<OptInRangeOnly>String</OptInRangeOnly>
</Request>

REST
opt={OptInRangeOnly}

 Chapter 3
Street Search Request Object

13
AddressLine
This element passes the street address to the Street Search service.

Remarks
The AddressLine element is required with any request to the Street Search
service. Attempting to submit a request without a populated AddressLine
element will result in an error.

AddressLine must contain, at the very minimum, a street number and a full or
partial street name. For example, “1234 M” would match all street names
beginning with the letter M in the submitted ZIP Code.

Syntax
SOAP
Request.AddressLine = string

XML
<Request>

<AddressLine>String</AddressLine>
</Request>

REST
a={AddressLine}

 Chapter 3
Street Search Request Object

14
City
This element passes the city name to the Street Search service.

Remarks
The city element is optional, as long as the ZIP Code is submitted with the
request. However, if the ZIP Code is missing or not valid, Street Search will
fall back on the city and state to determine the ZIP Code.

Also, if a search of the primary ZIP Code returns no results, Street Search will
search the city and state combination for other ZIP codes and use those ZIP
codes to expand the search.

Syntax
SOAP
Request.City = string

XML
<Request>

<City>String</City>
</Request>

REST
city={City}

 Chapter 3
Street Search Request Object

15
State
This element passes the state abbreviation to the Street Search service.

Remarks
The state element is optional, as long as the ZIP Code is submitted with the
request. However, if the ZIP Code is missing or not valid, Street Search will
fall back on the city and state to determine the ZIP Code.

Also, if a search of the primary ZIP Code returns no results, Street Search will
search the city and state combination for other ZIP codes and use those ZIP
codes to expand the search.

Syntax
SOAP
Request.State = string

XML
<Request>

<State>String</State>
</Request>

REST
state={State}

 Chapter 3
Street Search Request Object

16
Zip
This element passes a five-digit ZIP Code to the Street Search service.

Remarks
The ZIP element is required but, if missing or not valid, Street Search will fall
back on the city and state to determine the ZIP Code.

Also, if a search of the primary ZIP Code returns no results, Street Search will
search the city and state combination for other ZIP codes and use those ZIP
codes to expand the search.

Syntax
SOAP
Request.Zip = string

XML
<Request>

<Zip>String</Zip>
</Request>

REST
zip={Zip}

 Chapter 3
Street Search Request Object

17
Country
This element passes the two-characer country code to the Street Search
service.

Remarks
Currently, Street Search only works on addresses within the United States, so
this element is optional and has no effect. It is included for future compatibility.

Syntax
SOAP
Request.Country = string

XML
<Request>

<Country>String</Country>
</Request>

REST
ctry={Country}

4
 Street Search Response
Object
Combining Street Record components into a full address line
To display to the end user, you may want to combine the separate address
elements of the street record into a full address. For your typical address line,
the order you would combine the address components would be:

[Primary Range] [Pre-Direction] [Street Name] [Suffix]
[Post-Direction] [Suite Name] [Suite Range]

Not all addresses will have all of these components, in which case they will be
blank. However, there are exceptions. If the street record is a PO Box record
or a Rural Route record, you will have to re-arrange the address components
differently.

PO Boxes (Address Type P):
For PO Boxes, “PO Box” is stored in the street name while the box number is
stored in the primary range. There are no directionals, suffixes, or suites for
PO Boxes.

[Street Name] [Primary Range]

Rural Routes (Address Type R):
For Rural Routes, the street name contains the route information. Additionally,
if the route has multiple mailboxes, the primary range will have the box range
information. USPS specifications do not have a place to put the word 'Box' for
these types of addresses, so you must add it is manually if a box primary
18

 Chapter 4
Street Search Response Object

19
range exists. Like PO Boxes, Rural Routes do not have directionals, suffix, or
suites.

[Street Name] Box [Primary Range]

Spanish Addresses:
Suffixes are usually positioned after the street name. However, Spanish style
streets have their suffixes before the street name. If the suffix is “Avenida;”
“Calle;” “Camino;” “Paseo;” or “Via,” position the address components as
such:

[Primary Range] [Pre-Direction] [Suffix] [Street Name]
[Post-Direction]

All of these components are returned by each street record, except for the
primary range which comes in the form of a number range with a primary
range low and a primary range high. When doing an OptInRangeOnly search,
you will assume the provided input range is correct, and use that for display.
To do so, make sure to keep the parsed primary range from Address Object or
the WebSmart AddressCheck Service.

Non-Deliverable Street Records
Sometimes an entire range on a street will be non-deliverable. In those cases,
the street record still exists but the Plus4High and the Plus4High will both
contain the string “XXXX”. It is recommended that you filter out these records
as they cannot contain deliverable addresses.

Using StreetSearch with AddressCheck Error Result
Codes

StreetSearch can be combined with the results of an AddressCheck to find
alternatives for addresses that have uncorrectable errors. Of high importance
is the use of OptInRangeOnly, which should be turned on if the input primary
range was not the source of the address error. Here are types of
AddressCheck Result errors and how to use StreetSearch for each of them.

AE01 - Zip Code Error
Unfortunately, if the zip code and city/state are missing or incorrect, we cannot
search for alternative addresses.

AE02 - Unknown Street
The input street was not found, so we should assume the input range is
correct and turn on OptInRangeOnly to search for streets for which the input
range is valid.

 Chapter 4
Street Search Response Object

20
AE03 - Component Mismatch Error
This means the street name and range matched but other multiple address
components did not match. Turn on OptInRangeOnly to find the correct street
record and display the correct components.

AE04 - Non-deliverable Address
The physical address is correct but no mailbox exist there. Since the address
is correct, there are no alternative to generate.

AE05 - Multiple Match
Most commonly, this is due to multiple suffixes for the same street name. Turn
on OptInRangeOnly to isolate the possible records.

AE06 - Early Warning Address
Address does not exist in current database but the street is scheduled to be
added to the next update. No alternative generation is recommended here.

AE07 - Empty Address Input
There was no data to generate an alternative for.

AE08, AE09 - Suite Range Error, Suite Range Missing
This means the primary range and street name were correct. Turn on
OptInRangeOnly to isolate the records in the highrise. Additionally, USPS
data often has one or two records without suites in the beginning to represent
the entire building and/or building office. To list possible suites, exclude those
records by making sure a street record has a suite range low and suite range
high.

AE10, AE11 - Primary Range Invalid, Primary Range Missing
Here, the primary range is the incorrect piece of information, so we should not
turn on OptInRangeOnly. Doing a Street search with OptInRangeOnly off will
return all possible ranges for the input street.

AE12, AE13 - PO Box or Rural Route Number is invalid, missing
Here, the PO Box and Rural Route number is equivalent to the primary range,
so we should NOT turn on OptInRangeOnly. Doing a Street search with
OptInRangeOnly off will return all possible ranges for the input PO Box or
Rural Route.

AE14 - CMRA private mailbox missing
The USPS does not possess data for CMRA (Commercial Mail Receiving
Agencies) so alternatives cannot be generated.

 Chapter 4
Street Search Response Object

21
Return Elements — General
The SOAP interface for the Street Search service returns a Response Object.
The primary component of this object is an array of StreetRecord objects, one
for each street data record returned.

The XML and REST interfaces return XML documents containing a number of
<StreetRecord> elements, one for each street record returned.

TransmissionReference
Returns a string value containing the contents of the TransmissionReference
element from the original Request.

Remarks
If you passed any value to the TransmissionReference element when building
your request, it is returned here. You can use this property to match the
response to the request.

Syntax
SOAP

string = Response.TransmissionReference

XML
<ResponseArray>

<TransmissionReference>
String

</TransmissionReference>
</ResponseArray>

 Chapter 4
Street Search Response Object

22
Total Records
Returns a string value containing the number of street records returned with
the current response.

Remarks
This property returns the number of street records processed and returned by
the response as a string value.

Syntax
SOAP

string = Response.TotalRecords

XML
<ResponseArray>

<TotalRecords>String</TotalRecords>
</ResponseArray>

 Chapter 4
Street Search Response Object

23
Results
Returns a string value containing the general error, system error, and search
error messages from the most recent request sent to the service.

Remarks
The following codes can be returned:

Code Description

SE01 Web Service internal error.

GE01 General Error — Empty XML request structure.

GE04 General Error — CustomerID is empty.

GE05 General Error — CustomerID is invalid.

GE06 General Error — CustomerID is disabled.

GE07 General Error — XML request is invalid.

SS01
Search Status — Street Search returned 1 or more results
(OptInRangeOnly set to true).

SS02
Search Status — Street Search returned 1 or more results
(OptInRangeOnly set to false).

SS03
1000 street records returned but more than 1000
found. Please narrow your search.

DE01 Search Error — Required Input Missing.

DE02 Search Error — No Records Found

Syntax
SOAP

string = Response.Results
XML

<ResponseArray>
<Results>String</Results>

</ResponseArray>

 Chapter 4
Street Search Response Object

24
Version
Returns a string value containing the current version number of the Street
Search service.

Syntax
SOAP

string = Response.Version

XML
<ResponseArray>

<Version>String</Version>
</ResponseArray>

 Chapter 4
Street Search Response Object

25
StreetRecord Elements
The SOAP version of the Response object returns a property called
StreetRecord which is an array of StreetRecord objects matching the input
submitted with the Request with the original .

The XML and REST services may return one or more <StreetRecord>
elements that match the original request.

The maximum number of records returned in both cases in 1,000.

The following section describes the elements returned by each record in the
Repsonse Object.

Record ID
For each record in the Response, this element returns a string value
containing the sequential identifier for the current StreetRecord.

Remarks
The RecordID is sequential number to aid in organizing the StreetRecords
returned by the Street Search service.

Syntax
SOAP

string = Response.StreetRecord().RecordID

XML and REST
<Response>

<StreetRecord>
<RecordID>String</RecordID>

</StreetRecord>
</Response>

 Chapter 4
Street Search Response Object

26
Company
For each record in the StreetRecord array, this element returns the string
value containing the contents of the Company element if a company is tied to
a street record in the USPS Data.

Syntax
SOAP

string = Response.StreetRecord().Company

XML
<Response>

<StreetRecord>
<Company>String</Company>

</StreetRecord>
</Response>

 Chapter 4
Street Search Response Object

27
FullAddressLine
For each record in the StreetRecord array, this element returns a string value
containing the complete address line.

Remarks
This property returns the range high and low for both the street and the suite,
as well as an indicator if it is odd or even.

Example
"22342-22342 Even AVENIDA EMPRESA STE 225-225 Odd"

Syntax
SOAP

string = Response.StreetRecord().FullAddressLine

XML
<Response>

<StreetRecord>
<FullAddressLine>String</FullAddressLine>

</StreetRecord>
</Response>

 Chapter 4
Street Search Response Object

28
PrimaryRange
For each record in the StreetRecord array, the PrimaryRange node returns
three elements that indicate the high and low values of the range of street
numbers, and indicates whether the numbers in the range are even, odd, or
both.

Remarks
The high and low elements return a 10-character maximum string containing
the first and last street numbers in the range of streets address represented
by the current StreetRecord. For example, if the address range is 100 to 200
Main Street, these elements will return the values “100” and “200,”
respectively.

A hyphen in front of the range element indicates a significant leading zero.
That means that the leading zero is part of the range and is required. For
example, -7 would indicate the range is 07 and cannot be just 7.

The OddEven element returns a “E” if the numbers in the range are all even,
“O” if they are all odd, and “B” if there are both odd and even.

Syntax
SOAP

string = Response.StreetRecord().PrimaryRange.Low
string = Response.StreetRecord().PrimaryRange.High
string = Response.StreetRecord().PrimaryRange.OddEven

XML
<Response>

<StreetRecord>
<PrimaryRange>

<Low>String</Low>
<High>String</High>
<OddEven>String</OddEven>

</PrimaryRange>
</StreetRecord>

</Response>

 Chapter 4
Street Search Response Object

29
Street
These elements return the parsed components of the street name: the pre-
directional, the name, the suffix and the post-directional.

Remarks
The Street elements return the following information:

PreDirection
The pre-direction is a geographical directional that precedes the street name.
For example, in the address range of 100 N Main St, this element will hold the
“N.” Directions such as “North” will be changed to “N” before they are returned
by this function.

The directional can be one of the following: “N;” “NE;” “E;” “SE;” “S;” “SW;”
“W;” “NW.”

Name
Returns the name of the street containing the current range.

Suffix
When street names are used more than once within a city or area, street
suffixes are often used to distinguish them. For example, if there is a Main
Street but also a Main Avenue, this element will hold either the “St” or “Ave”
suffix, depending on which one is being referred to.

Typical suffix values include “ST,” “RD,” “AVE,” “BLVD,” “CIR,” and “PL.”

PostDirection
The post-direction is a geographical directional that follows the street name.
For example, in the address range of 100 N Main St E, this element will hold
the “E.”

The post direction can be one of the following: “N;” “NE;” “E;” “SE;” “S;” “SW;”
“W;” “NW.”

Note About Spanish Street Names
For street names that begin with certain Spanish words, that first word will be
returned by the Suffix element and the next word in the street name will be
returned as the street name. This is because Spanish street names have the
suffix at the front of the address. If the suffix was not returned by the Suffix
element, it would appear that every street in some Puerto Rican ZIP codes

 Chapter 4
Street Search Response Object

30
began with the same letter. The Spanish words that would be returned by the
Suffix element are: “Avenida;” “Calle;” “Camino;” “Paseo;” and “Via.”

Syntax
SOAP

string = Response.StreetRecord().Street.PreDirection
string = Response.StreetRecord().Street.Name
string = Response.StreetRecord().Street.Suffix
string = Response.StreetRecord().Street.PostDirection

XML
<Response>

<StreetRecord>
<Street>

<PreDirection>String</PreDirection>
<Name>String</Name>
<Suffix>String</Suffix>
<PostDirection>String</PostDirection>

</Street>
</StreetRecord>

</Response>

 Chapter 4
Street Search Response Object

31
Suite
These elements return the secondary address information, if any, for the
current Street record.

Remarks
The Suite elements return the following information:

Name
If suite numbers exist in the address range, this element will indicate the
proper suite name for addresses in that range.

Possible return values are: “#;” “APT;” “BLDG;” “BOX;” “BSMT;” “DEPT;” “FL;”
“FRNT;” “HNGR;” “LBBY;” “LOT;” “LOWR;” “OFC;” “PH” (Penthouse); “PIER;”
“REAR;” “RM;” “SIDE;” “SLIP;” “SPC;” “STE;” “STOP;” “TRLR;” “UNIT;”
“UPPR.

Low
This element returns the lowest suite number in the current range. For
instance, if the range covered the suite numbers 1001 through 2001, this
element would return “1001.”

High
This element returns the lowest suite number in the current range. For
instance, if the range covered the suite numbers 1001 through 2001, this
element would return “2001.”

OddEven
This element returns an “O” for Odd, an “E” for Even, or a “B” for Both. An “O”
indicates that the suite range contains only odd numbers, an “E” indicates that
only even numbers are present in the suite range, and a “B” indicates that
both odd and even numbers are included in the suite range. For example, an
“O” will indicate that, in the 1001 to 2001 suite range, only suite numbers
1001, 1003, 1005, 1007, and so on, exist.

 Chapter 4
Street Search Response Object

32
Syntax
SOAP

string = Response.StreetRecord().Suite.Name
string = Response.StreetRecord().Suite.Low
string = Response.StreetRecord().Suite.High
string = Response.StreetRecord().Suite.OddEven

XML
<Response>

<StreetRecord>
<Suite>

<Name>String</Name>
<High>String</High>
<Low>String</Low>
<OddEven>String</OddEven>

</Suite>
</StreetRecord>

</Response>

 Chapter 4
Street Search Response Object

33
Zip
The Zip elements return the five-digit ZIP Code, plus the high and low values
of the four-digit ZIP + 4 extensions.

Remarks
The Zip5 element returns the five-digit base ZIP Code for the street record.

The return values of the Plus4Low and Plus4High elements define the range
of ZIP + 4 codes for the street record. If the ZIP + 4 range is 1234 to 1334,
Plus4Low will return the “1234” and Plus4High will return “1334.”

The Plus4Low and Plus4High elements will usually contain the same value. In
some instances, such as with PO Boxes, the Plus4Low and Plus4High
elements will return different values as every PO Box has its own ZIP + 4
code.

In these cases, the lengths of the address range and the Plus4 High-Low
range will be identical and the numbers can be paired up accordingly. For
example, if the address range is PO Box 100 to 200 and the Plus4 High-Low
range is 0100 to 0200, “PO Box 110” will have a Plus4 of “0110.”

Syntax
SOAP

string = Response.StreetRecord().Zip.Zip5
string = Response.StreetRecord().Zip.Plus4Low
string = Response.StreetRecord().Zip.Plus4High

XML
<Response>

<StreetRecord>
<Zip>

<Zip5>String</Zip5>
<Plus4Low>String</Plus4Low>
<Plus4High>String</Plus4High>

</Zip>
</StreetRecord>

</Response>

 Chapter 4
Street Search Response Object

34
CarrierRoute
For each record in the Street Record Array, CarrierRoute returns a string
value containing the four-character code defining the carrier route for that
record.

Remarks
The first character of this property is always alphabetic, and the last three
characters are numeric. The alphabetic letter indicates the type of delivery
associated with this address.

B PO Box

C City Delivery

G General Delivery

H Highway Contract

R Rural Route

Syntax
SOAP
string = Response.StreetRecord().CarrierRoute

XML
<Response>

<StreetRecord>
<CarrierRoute>String</CarrierRoute>

</StreetRecord>
</Response>

 Chapter 4
Street Search Response Object

35
Urbanization
For each record in the StreetRecord array, Urbanization Code returns a string
value containing the six-digit code number for the Urbanization connected
with the current address. Urbanization Name returns a string value containing
the name of the Urbanization.

Remarks
Urbanizations will only be returned for addresses in Puerto Rico.

Syntax
SOAP
string = Response.StreetRecord().Urbanization.Code
string = Response.StreetRecord().Urbanization.Name

XML
<Response>

<StreetRecord>
<Urbanization>

<Name>String</Name>
<Code>String</Code>

</Urbanization>
</StreetRecord>

</Response>

 Chapter 4
Street Search Response Object

36
AddressType
For each record in the StreetRecord array, this element returns the address
type for the current streetrecord returned

Remarks
The Address Type function is a 1-character (maximum) string value, that
indicates the type of address that was returned:

Code Type

F Firm or Company address

G General Delivery address

H High Rise or Business complex

P PO Box address

R Rural Route address

S Street or Residential address

Syntax
SOAP
string = Response.StreetRecord().AddressType

XML
<Response>

<StreetRecord>
<AddressType>String</AddressType>

</StreetRecord>
</Response>

 Chapter 4
Street Search Response Object

37
LACSIndicator
For each record in the StreetRecord array, this element returns the LACS
indicator for each StreetRecord.

Remarks
The LacsIndicator element returns a one-character which indicates whether
or not the address returned by current StreetRecord element has undergone
LACS conversion.

Some rural route addresses are modified to city-style addresses to allow
emergency services (for example, ambulance, police, fire, and so on) to find
these addresses more efficiently.

An empty space in the return value indicates that the address has not
undergone a conversion. A value of “L” in the LACSIndicator return value
indicates that the address has undergone a conversion. After a conversion,
the old address is retained in the ZIP + 4 file for a period of one year. After the
one year period, the old addresses will be dropped from the ZIP + 4 file and
the address checking logic will not assign a ZIP + 4 for this address.

Syntax
SOAP
string = Response.StreetRecord().LACSIndicator

XML
<Response>

<StreetRecord>
<LACSIndicator>String</LACSIndicator>

</StreetRecord>
</Response>

 Chapter 4
Street Search Response Object

38
BaseAlternateIndicator
For each record in the StreetRecord array, this element returns the base
alternate indicator for the current StreetRecord.

Remarks
This element returns a 1-character maximum string value which specifies
whether or not a record is a base (preferred) or alternate record. Base records
(indicated by a “B”) can represent a range of addresses or an individual
address, such as a firm record, while alternate records (indicated by an “A”)
are individual delivery points. Base records are generally preferred over
alternate records. The base record for an alternate record can be found by
matching up the ZIP + 4 ranges.

Syntax
SOAP
string = Response.StreetRecord().BaseAlternateIndicator

XML
<Response>

<StreetRecord>
<BaseAlternateIndicator>String</BaseAlternateIndicator>

</StreetRecord>
</Response>

 Chapter 4
Street Search Response Object

39
Response Object XML Format
The following shows the structure of the XML document returned by the
WebSmart StreetSearch Service.

<?xml version="1.0" encoding="UTF-8"?>
<Response>

<Version>String</Version>
<TransmissionReference>String</TransmissionReference>
<Results>String</Results>
<TotalRecords>String</TotalRecords>
<StreetRecord>

<RecordID>String</RecordID>
<Company>String</Company>
<FullAddressLine>String</FullAddressLine>
<PrimaryRange>

<Low>String</Low>
<High>String</High>
<OddEven>String</OddEven>

</PrimaryRange>
<Street>

<PreDirection>String</PreDirection>
<Name>String</Name>
<Suffix>String</Suffix>
<PostDirection>String</PostDirection>

</Street>
<Suite>

<Name>String</Name>
<Low>String</Low>
<High>String</High>
<OddEven>String</OddEven>

</Suite>
<Zip>

<Zip5>String</Zip5>
<Plus4Low>String</Plus4Low>
<Plus4High>String</Plus4High>

</Zip>
<CarrierRoute>String</CarrierRoute>
<Urbanization>

<Code>String</Code>
<Name>String</Name>

 Chapter 4
Street Search Response Object

40
</Urbanization>
<AddressType>String</AddressType>
<LACSIndicator>String</LACSIndicator>
<BaseAlternateIndicator>

String
</BaseAlternateIndicator>

</StreetRecord>
</Response>

	DQT_WS_StreetSearch_RG_Cover
	DQT_WS_StreetSearch_RG_NoCover
	WebSmart
	Table of Contents
	Welcome to WebSmart Services
	Special Characters

	An Introduction to Street Search
	Street Search Options
	Street In Range Search
	Street Name Search

	Understanding Street Search
	Partial Matches
	ZIP Code

	Adding Street Search to a Project
	Submitting an XML Request
	Building a REST Request

	Street Search Request Object
	SOAP Request
	XML Request
	REST Request
	Request Elements
	Customer ID
	Transmission Reference
	OptInRangeOnly
	AddressLine
	City
	State
	Zip
	Country

	Street Search Response Object
	Return Elements — General
	TransmissionReference
	Total Records
	Results
	Version

	StreetRecord Elements
	Record ID
	Company
	FullAddressLine
	PrimaryRange
	Street
	Suite
	Zip
	CarrierRoute
	Urbanization
	Syntax

	AddressType
	Syntax

	LACSIndicator
	Syntax

	BaseAlternateIndicator
	Syntax

	Response Object XML Format

