
Reference Guide

Name Parser

WebSmart Name Parser
Reference Guide

ii

Copyright
Companies, names, and data used in examples herein are fictitious unless otherwise noted. No
part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, for any purpose, without the express written permission of Melissa Data
Corporation. This document and the software it describes are furnished under a license
agreement, and may be used or copied only in accordance with the terms of the license
agreement.

© 2011. Melissa Data Corporation. All rights reserved.

Information in this document is subject to change without notice. Melissa Data Corporation
assumes no responsibility or liability for any errors, omissions, or inaccuracies that may appear in
this document.

Trademarks
WebSmart Name Parser is a trademark of Melissa Data Corporation. Windows is a registered
trademark of Microsoft Corp.

MELISSA DATA CORPORATION
22382 Avenida Empresa
Rancho Santa Margarita, CA 92688-2112
Phone: 1-800-MELISSA (1-800-635-4772)
Fax: 949-589-5211
E-mail: info@MelissaData.com
Web site: www.MelissaData.com

For the latest version of this Reference Guide, visit
http://www.MelissaData.com/tech/websmart.htm.

Document Code: WSNRFG
Revision number: 120307.090
Last Update: March 7, 2012

http://www.MelissaData.com/tech/websmart.htm

iii

Dear Programmer,

I would like to take this opportunity to introduce you to Melissa Data Corp.
Founded in 1985, Melissa Data provides data quality solutions, with
emphasis on address and phone verification, postal encoding, and data
enhancements.

We are a leading provider of cost-effective solutions for achieving the highest
level of data quality for lifetime value. A powerful line of software, databases,
components, and services afford our customers the flexibility to cleanse and
update contact information using almost any language, platform, and media
for point-of-entry or batch processing.

This online manual will guide you through the properties and methods of our
easy-to-use programming tools. Your feedback is important to me, so please
don't hesitate to email your comments or suggestions to
ray@MelissaData.com.

I look forward to hearing from you.

Best Wishes,

Raymond F. Melissa
President

iv

Table of Contents

Welcome to WebSmart Services... 1

An Introduction to Name Parser ... 4
Adding WebSmart Name Parser to a Project .. 5
Submitting an XML Request.. 5
Building a REST Request.. 5

Name Parser Request.. 6
Request Elements ... 8
Record Elements ... 19

Name Parser Response... 22
Response Object XML Format .. 44

1

1 Welcome to WebSmart
Services

The WebSmart Services are a collection of services that can be accessed by
any application, allowing you to incorporate Melissa Data’s technology into
your programs without worrying about continually downloading and installing
updates.

Melissa Data currently offers the following services:

• Address Verifier — Verify and standardize one or more mailing
address. This service also appends ZIP + 4® and Carrier Route
information.

• Email Verifier — Verify, correct and update, domain names from one
or more email addresses.

• GeoCoder — Returns geographic, census, and demographic data for
almost any location in the United States. Uses multisource data to
return latitude and longitude down to rooftop accuracy of over 95% of
all physical addresses in the United States.

• IP Locator — Returns name and geographic information for the
owner of a public IP address.

• Delivery Indicator — Indicates whether an address represents a
business or residential address.

• Name Parser — Parses and genderizes personal names and also
generates salutations for correspondence.

 Chapter 1
Welcome to WebSmart Services

2

• Street Search — Searches a ZIP Code™ from street address ranges
matching a specific pattern and, optionally, a street number.

• ZIP Search — Matches city names with ZIP/Postal codes, ZIP/Postal
codes with city names and searches for city names matching a
pattern with a given state.

• Phone Verifier — Verifies and parses phone numbers, as well as
identifying phone numbers as residential, business, VOIP or wireless.

• Property — Returns basic or detailed information about the size,
ownership, and structures on a given parcel of land.

Both GeoCoder and Delivery Indicator work from an “address key” returned
by the Address Verifier service, therefore, an address must first be submitted
to the Address Verifier before you can use either of the other two services.

There are three ways to access the WebSmart Services:

• SOAP — The SOAP interface allows you to add the Web Service to
an application as if it were a component object or DLL. You can then
access the Web Service elements and execute commands as if they
were properties and methods.

• XML — The Web Service can also submit a request as an XML
document. It will then return the processed records as another XML
document that can be parsed using whatever XML tools you utilize in
your development environment.

• REST — This interface allows you to submit a single address record
as part of a URL string and returns the processed record as an XML
document identical to the one returned by the XML interface.

Using the REST service may require that you encode certain characters using
the proper URL entities before adding them to a URL. Characters like spaces,
slashes, ampersands and others must be replaced by special codes, which
usually consist of a percent sign followed by a two-digit hexadecimal number.

The following table shows the replacements for the most common characters.

Character URL Encoded

Space %20 or +

* %2A

%23

& %26

% %25

 Chapter 1
Welcome to WebSmart Services

3

Many modern programming languages have a URL encode and URL
decoding function that automates these character replacements.

Special Characters
Because the WebSmart Services are XML-based, certain characters cannot
be passed as data. They would be interpreted as part of the XML structure
and would cause errors. The following codes must be substituted for these
characters.

$ %28

+ %2B

, %2C

/ %2F

: %3A

; %3B

< %3C

= %3D

> %3E

? %3F

@ %40

[%5B

] %5D

~ %7E

Character URL Encoded

& & (ampersand)

“ " (left/right quotes should be replaced with straight quotes)

‘ ' (apostrophe)

< < (less-than)

> > (greater-than)

Character URL Encoded

4

2 An Introduction to
Name Parser

The WebSmart Name Parser automates the handling of name data, making it
simple to send personalized business mail, tailored specifically to the gender
of the people in your mailing list, while screening out vulgar or obviously false
names.

• Parse full names into first, middle and last names, as well as prefixes
like "Dr." and suffixes like "Jr."

• Handle name strings that include two names, such as "John and
Mary Jones."

• Correct misspelled first names.

• Flag vulgar names and names that are obviously false, such as "Bugs
Bunny."

• Assign gender based on the first name.

• Select how aggressively Name Parser determines the gender of
names, based on the known gender bias of the mailing list, if any.

• Create personalized salutations for business mail.

 Chapter 2
An Introduction to Name Parser

5

Adding WebSmart Name Parser
to a Project

If you are using the SOAP service with Visual Studio .NET, you need to add a
web reference to the service to your project. Click on the Project menu and
select Add Web Reference... Enter the following URL on the Add Web
Reference dialog box:

https://name.melissadata.net/v2/SOAP/Service.svc

If you are not using Visual Studio .NET, see the documentation for your SOAP
interface for the procedure for adding the service to your project.

Submitting an XML Request
After building your XML string from your data, an XML request to the web
service is submitted using an HTTP POST operation to the following URL:

https://name.melissadata.net/v2/XML/Service.svc/
doNameCheck

Building a REST Request
Query strings are sent to the web service as part of the URL using an HTTP
Get operation appended to following URL:

https://name.melissadata.net/v2/REST/Service.svc/
doNameCheck

Many modern programming language have a URL encode and URL decoding
function that automates these character replacements.

6

3 Name Parser Request

At the very minimum, a request to the WebSmart Name Parser consists of the
user’s Customer ID and at least one full name.

SOAP Request
The following Visual Basic Code shows a simple order of operations for
building and submitting a RequestArray object, submitting it to the web
service and retrieving a response object.

Step 1 – Create the Request and Response Objects
Dim ReqName Parser As New dqwsName Parser.RequestArray
Dim ResName Parser As New dqwsName Parser.ResponseArray

Step 2 – Assign the General Request Values
There are two properties of the Request Array object that apply to the request
as a whole. CustomerID is required.

ReqName Parser.CustomerID = strCustID
ReqName Parser.TransmissionReference = strTranRef

The Transmission Reference is a unique string value that identifies this
request array.

Step 3 – Dimension the Record Array
The maximum number of records per request is 100, therefore the largest
dimension will be 99.

 Chapter 3
Name Parser Request

7

ReDim ReqName Parser.Record(99)

For maximum efficiency, you should dimension the array using the exact
number of records being submitted minus one.

Step 4 – Build the Record Array
The exact method for building the array will depend on the exact database
software in use, but you will need to loop through every record to be
submitted and assign the required values to the corresponding elements for
each record in the RequestArray.

ReqName Parser.Record(intRecord) = New dqwsName
Parser.RequestArrayRecord

ReqName Parser.Record(intRecord).FullName = "John Q.
Smith"

The lines above show only the elements that are absolutely required to submit
a record to the web service. See the rest of this chapter for a description of all
of the elements available to include with a request record.

Repeat for each record being submitted with the current RequestArray.

Step 5 – Submit the Request Array
The final step is to create the Service Client Object and then submit the
RequestArray object doNameCheck method. This sends the data to the web
service and retrieves the ResponseArray object.

Name ParserClient = New dqwsName Parser.Service
ResName Parser = Name ParserClient.doNameCheck(ReqName

Parser)
Name ParserClient.Dispose()

XML Request
The raw XML request is built using whatever XML tools are available via your
development tools and submitted to the following URL using an HTTP POST
request.

https://name.melissadata.net/v2/XML/Service.svc/
doNameCheck

Rather than an array of Record object, an XML request contains a <Record>
element for each address record, up to 100.

The following XML Code contains the same request as the SOAP example
above.

 Chapter 3
Name Parser Request

8

<RequestArray>
<TransmissionReference>Web Service Test 2008/12/31
</TransmissionReference>
<CustomerID>123456789</CustomerID>
<Record>

<RecordID>1</RecordID>
<FullName>John Q. Smith III and Mary J. Jones

</FullName>
</Record>
<Record>
...
</Record>

</RequestArray>

REST Request
A REST request can submit a single address record via an HTTP GET. The
following example uses the same address as the SOAP and XML samples.

https://name.melissadata.net/v2/REST/Service.svc/
doNameCheck?id=12345678&t=RestTest&Name=
Raymond%20F.%20Melissa

The record ID element does not exist for the REST interface, since you can
only submit a single record per request.

Request Elements
The following section lists the elements that set the basic options for each and
identify the user to the web service.

 Chapter 3
Name Parser Request

9

CustomerID
This is a required string value containing the identifier number issued to the
customer when signing up for WebSmart Services.

Remarks
You need a customer ID to access any Melissa Data web service. If this
element is not populated, the web service will return an error. To receive a
customer ID, call your Melissa Data sales representative at 1-800-MELISSA.

Syntax
SOAP
Request.CustomerID = string

XML
<RequestArray>

<CustomerID>String</CustomerID>
</RequestArray>

REST
id={CustomerID}

 Chapter 3
Name Parser Request

10

TransmissionReference
This is an optional string value that may be passed with each Request Array
to serve as a unique identifier for this set of records.

Remarks
This value is returned as sent by the Response Array, allowing you to match
the Response to the Request.

Syntax
SOAP
Request.TransmissionReference = string

XML
<RequestArray>

<TransmissionReference>String</TransmissionReference>
</RequestArray>

REST
t={transMissionReference}

 Chapter 3
Name Parser Request

11

OptCorrectSpelling
Enables or disables spelling correction of first names during parsing.

Remarks
The Name Parser uses a database of common misspelled first name names
to correct the values of the First Name properties.

Set this property to True to enable this feature. Set it to False to disable.

Syntax
SOAP
Request.OptCorrectSpelling = boolean

XML
<RequestArray>

<OptCorrectSpelling>True or False</OptCorrectSpelling>
</RequestArray>

REST
OptSpelling={OptCorrectSpelling}

 Chapter 3
Name Parser Request

12

OptGenderAggression
Sets how aggressively Name Parser will attempt to genderize neutral first
names.

Remarks
Normally, Name Parser will assign a value of "N" when attempting to
genderize a first name that can easily be male or female, such as "Pat,"
"Chris" or "Tracy." Every name is assigned a score from 7 to 1, with 7 being
always male, 4 being completely neutral and 1 being always female.

Using this property in conjunction with the optGenderPopulation element, you
can instruct Name Parser how much preference it gives to one gender or the
other when assigning a gender to a normally neutral name. This property can
accept the following values.

The default value is 2.

This table shows how the settings for Gender Aggression and Gender
Population affect genderizing:

Value Definition

1 Aggressive

2 Neutral

3 Conservative

Male Female

Aggression
Always

(7)
Often

(6)
Normally

(5)
Neutral

(4)
Normally

(3)
Often

(2)
Always

(1)

Conservative
B

ias
Neutral M N N N N N F

Male M M N N N N F

Female M N N N N F F

Neutral

B
ias

Neutral M M N N N F F

Male M M M N N F F

Female M M N N F F F

Aggressive

B
ias

Neutral M M M N F F F

Male M M M M N F F

Female M M N F F F F

 Chapter 3
Name Parser Request

13

Syntax
SOAP
Request.OptGenderAggression = integer

XML
<RequestArray>

<OptGenderAggression>integer</OptGenderAggression>
</RequestArray>

REST
OptGndAggr={OptGenderAggression}

 Chapter 3
Name Parser Request

14

OptGenderPopulation
Sets the gender balance of the source data, either predominantly male,
predominant female or neutral.

Remarks
If you know that a mailing will be comprised of predominantly one gender or
the other, meaning that gender-neutral will likely be of that gender, use this
property to set the gender bias to use when genderizing names, either via the
Parse or Genderize methods.

Gender Population contains an enumerated value. The possible values for
this property are:

The default value is 2

Value Definition

1 Bias toward male

2 Evenly split.

3 Bias toward female

Syntax
SOAP
Request.OptGenderPopulation = integer

XML
<RequestArray>

<OptGenderPopulation>Integer</OptGenderPopulation>
</RequestArray>

REST
OptGndPop={OptGenderAggression}

 Chapter 3
Name Parser Request

15

OptNameHint
Sets an integer value indicating the most likely format of the FullName string.

Remarks
This setting helps the Name Parser in cases when the order and formatting of
the FullName string are unclear.

Full or normal name order is <Prefix> <First> <Middle> <Last> <Suffix>.

Inverse name order is <Last> <Suffix>, <Prefix> <First> <Middle>.

The default is 4 ("Varying"). The possible values are:

Code Meaning Description

1 DefinitelyFull Name will always be treated as normal name
order, regardless of formatting or
punctuation.

2 VeryLikelyFull Name will be treated as normal name order
unless inverse order is clearly indicated by
formatting or punctuation.

3 ProbablyFull If necessary, statistical logic will be employed
to determine name order, with a bias toward
normal name order.

4 Varying If necessary, statistical logic will be employed
to determine name order, with not bias
toward either name order.

5 ProbablyInverse If necessary, statistical logic will be employed
to determine name order, with a bias toward
inverse name order.

6 VeryLikelyInverse Name will be treated as inverse name order
unless normal order is clearly indicated by
formatting or punctuation.

7 Definitely Inverse Name will always be treated as inverse name
order, regardless of formatting or
punctuation.

8 MixedFirstName Name element is expected to only contain
first names.

9 MixedLastName Name element is expected to only contain
last names.

 Chapter 3
Name Parser Request

16

Syntax
SOAP
Request.OptNameHint = integer

XML
<RequestArray>

<OptNameHint>inte</OptNameHint>
</RequestArray>

REST
OptHint={OptNameHint}

 Chapter 3
Name Parser Request

17

OptSalutationPrefix
Accepts a string value and sets the text preceding the name for salutations
generated by the web service.

Remarks
This property lets you set the preferred text that you want before the proper
name in salutations generated by the web service. The default = "Dear "

Syntax
SOAP
Request.OptSalutationPrefix = string

XML
<RequestArray>

<OptSalutationPrefix>String</OptSalutationPrefix>
</RequestArray>

REST
OptSalPrfx={OptSalutationPrefix}

 Chapter 3
Name Parser Request

18

OptSalutationSlug
Accepts a string value and sets the text that will be substituted for a name into
salutations generated by the web service, when no parsed or parseable name
are present in the required properties.

Remarks
If the value of the FullName property cannot be parsed by the DoParse action,
this string will be substituted for the name.

The default value is "Valued Customer."

Syntax
SOAP
Request.OptSalutationSlug = string

XML
<RequestArray>

<OptSalutationSlug>String</OptSalutationSlug>
</RequestArray>

REST
OptSalSlug={OptSalutationSlug}

 Chapter 3
Name Parser Request

19

OptSalutationSuffix
Accepts a string value and sets the text that follows the name for salutations
generated by the web service.

Remarks

This property lets you set the preferred text that you want after the proper
name in salutations generated by the web service. The default = ";"

Record Elements
For the SOAP and XML web services, the Request Array will contain an
element or property called Record. In SOAP this property is an array of object
variables of the type Record. XML will have as many Record elements as
there are addresses being submitted to the web service.

The REST interface only allows a single record per request.

Syntax
SOAP
Request.OptSalutationSuffix = string

XML
<RequestArray>

<OptSalutationSuffix>String</OptSalutationSuffix>
</RequestArray>

REST
OptSalSffx={OptSalutationSuffix}

 Chapter 3
Name Parser Request

20

RecordID
This element is a string value containing a unique identifier for the current
record.

Remarks
Use this element to match the record with the record returned with the
Response Array.

When using the SOAP interface, if this element is not populated, the web
service will automatically insert a sequential number for each record.

There is no equivalent for Record ID for the REST interface.

Syntax
SOAP
Request.Record().RecordID = string

XML
<RequestArray>

<Record>
<RecordID>String</RecordID>

</Record>
</RequestArray>

 Chapter 3
Name Parser Request

21

FullName
This element must contain at least one full personal name.

Remarks
This element can contain one or two full names.

Syntax
SOAP
Request.Record().FullName = string

XML
<RequestArray>

<Record>
<FullName>String</FullName>

</Record>
</RequestArray>

REST
name={FullName}

22

4 Name Parser Response

The SOAP interface for the Name Parser service returns a ResponseArray
Object. The primary component of this object is an array of Record objects,
one for each record submitted with the RequestArray, containing the verified
and standardized address data.

The XML interface returns an XML document containing a number of
<Record> elements, one for each record submitted with the Request,
containing the verified and standardized address data.

The REST interface returns an XML document with a single <Record>
element.

 Chapter 4
Name Parser Response

23

TransmissionReference
Returns a string value containing the contents of the TransmissionReference
element from the original Request.

Remarks
If you passed any value to the TransmissionReference element when building
your request, it is returned here. You can use this property to match the
response to the request.

Syntax
SOAP
string = Response.TransmissionReference

XML
<ResponseArray>

<TransmissionReference>
String

</TransmissionReference>
</ResponseArray>

 Chapter 4
Name Parser Response

24

Total Records
Returns a string value containing the number of records returned with the
current response.

Remarks
This property returns the number of records processed and returned by the
response as a string value.

Syntax
SOAP
string = Response.TotalRecords

XML
<ResponseArray>

<TotalRecords>String</TotalRecords>
</ResponseArray>

 Chapter 4
Name Parser Response

25

Results
Returns a string value containing the general and system error messages
from the most recent request sent to the service.

Remarks
Do not confuse this element with the Results element returned with each
record, described on page 29. This element returns error messages caused
by the most recent request as a whole.

The possible values are:

Code Description

SE01 Web Service internal error.

GE01 General Error — Empty XML request structure.

GE02 General Error — Empty XML request record structure.

GE03
General Error — Counted records send more than number of
records allowed per request.

GE04 General Error — CustomerID is empty.

GE05 General Error — CustomerID is invalid.

GE06 General Error — CustomerID is disabled.

GE07 General Error — XML request is invalid.

Syntax
SOAP
string = Response.Results

XML
<ResponseArray>

<Results>String</Results>
</ResponseArray>

 Chapter 4
Name Parser Response

26

Version
Returns a string value containing the current version number of the Name
Parser web service.

Syntax
SOAP
string = Response.Version

XML
<ResponseArray>

<Version>String</Version>
</ResponseArray>

 Chapter 4
Name Parser Response

27

Record Elements
The SOAP version of the Response Array returns a property called Record
which is an array of Record objects, one for each record submitted with the
original Request Array.

The XML service returns one <Record> element for every record submitted
with the original request.

The REST response is identical to the XML response, but will only contain a
single <Record> element.

The following section describes the elements returned by each record in the
Response Array.

 Chapter 4
Name Parser Response

28

Record ID
For each record in the Response Array, this element returns a string value
containing the unique identifier for the current record if one was passed to the
Request Array.

Remarks
Use this element to match the record in the Response Array with the record
originally passed with the request.

Syntax
SOAP
string = Response.Record().RecordID

XML
<ResponseArray>

<Record>
<RecordID>String</RecordID>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

29

Results
For each record in the Response Array, this element returns a string value
containing status and error codes for the current record. Multiple codes are
separated by commas.

Remarks
This element returns the status and error messages for each record in the
Response Array. For the general status and error messages generated by the
most recent Name Parser request, see the general Result element on
page 25.

The Result element may return one or more four-character strings, separated
by commas, depending on the result generated by the current record.

If the address in the current record was verified, this element will contain the
value “NS01” at the very minimum and may include more of the “NS” codes. If
the address could not be verified, the codes beginning with “NE” will indicate
the reason or reasons why verification failed.

The possible values are:

Code Description

NS01 Parsing successful Name parsing was successful.

NS02 Error while parsing There was error. Check error
codes below

NS03 GetFirstName spelling corrected The spelling of the GetFirstName
function was corrected.

NS04 GetFirstName2 spelling corrected The spelling of the
GetFirstName2 function was
corrected.

NS05 First Name 1 was found in the first
name lookup table.

The return value of the
GetFirstName function was
verified against Name Object’s
table of first names.

NS06 Last Name 1 was found in the last
name lookup table.

The return value of the
GetLastName function was
verified against Name Object’s
table of last names.

NS07 First Name 2 was found in the first
name lookup table.

The return value of the
GetFirstName2 function was
verified against Name Object’s
table of first names.

 Chapter 4
Name Parser Response

30

NS08 Last Name 2 was found in the last
name lookup table.

The return value of the
GetLastName2 function was
verified against Name Object’s
table of last names.

NE01 Unrecognized format Two names were detected but
the FullName string was not in a
recognized format.

NE02 Multiple first names detected Multiple first names — could not
accurately genderize.

NE03 Vulgarity detected A vulgarity was detected in the
name.

NE04 Suspicious word detected The name contained words found
on the list of nuisance names
(such as “Mickey Mouse”).

NE05 Company name detected. The name contained words
normally found in a company
name.

NE06 Non-alphabetic character detected. The name contained a non-
alphabetic character.

Syntax
SOAP
string = Response.Record().Results

XML
<ResponseArray>

<Record>
<Results>String</Results>

</Record>
</ResponseArray>

Code Description

 Chapter 4
Name Parser Response

31

First Property
Returns the first name from a full name passed to the Request Array.

Remarks
This property will return the first name of any name passed to the Request
Array. If the named only contained a single name, a single first name will be
returned here. If two names were parsed, the first of the two first names will
be returned by this property.

Syntax
SOAP
string = Response.Record().Name.First

XML
<ResponseArray>

<Record>
<Name>

<First>String</First>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

32

First2
Returns the second first name from a full name passed to the Request Array.

Remarks
This property will return the second first name, if two names were passed to
the Request Array.

Syntax
SOAP
string = Response.Record().Name.First2

XML
<ResponseArray>

<Record>
<Name>

<First2>String</First2>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

33

Gender
Returns the gender of the name passed to the Request Array.

Remarks
This property returns a one-character string indicating the gender of the first
name found in the FullName element passed to the Request Array.

The possible values returned by this property are:

Code Description

M Male

F Female

U Unknown first name or no first name present

N A neutral first name

Syntax
SOAP
string = Response.Record().Name.Gender

XML
<ResponseArray>

<Record>
<Name>

<Gender>String</Gender>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

34

Gender2
Returns the gender of any second first name if a dual name was passed to the
Request Array.

Remarks
This property returns a one-character string indicating the gender of any
second first name found in the full name property passed to the Request
Array.

The possible values returned by this property are the same as for the Gender
property.

Syntax
SOAP
string = Response.Record().Name.Gender2

XML
<ResponseArray>

<Record>
<Name>

<Gender2>String</Gender2>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

35

Last
Returns the last name from a full name passed to the Request Array.

Remarks
This property will return the last name from a name passed to the Request
Array. If the FullName property only contained a single name, the last name
will be returned here. If two names were parsed, the first of the two last names
will be returned by this property.

Syntax
SOAP
string = Response.Record().Name.Last

XML
<ResponseArray>

<Record>
<Name>

<Last>String</Last>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

36

Last2
Returns the second last name from a dual name passed to the Request Array.

Remarks
This property will return the second last name, if the Full Name passed to the
Request Array contained two names.

Syntax
SOAP
string = Response.Record().Name.Last2

XML
<ResponseArray>

<Record>
<Name>

<Last2>String</Last2>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

37

Middle
Returns the first middle name from a full name passed to the Request Array.

Remarks
This property will return the middle name from the name passed to the
Request Array. If the full fame only contained a single name, the middle
name, if any, will be returned here. If two names were parsed, the first of the
two middle names will be returned by this property.

Syntax
SOAP
string = Response.Record().Name.Middle

XML
<ResponseArray>

<Record>
<Name>

<Middle>String</Middle>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

38

Middle2
Returns the second middle name from a dual name passed to the Request
Array.

Remarks
This property will return the second middle name, if the Full Name passed to
the Request Array contained two names.

Syntax
SOAP
string = Response.Record().Name.Middle2

XML
<ResponseArray>

<Record>
<Name>

<Middle2>String</Middle2>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

39

Prefix
Returns the first prefix (such as "Mr." or "Dr.") from a full name passed to the
Request Array.

Remarks
This property will return the prefix from a name passed to the Request. If the
Full Name property only contained a single name, the prefix, if any, will be
returned here. If two names were parsed, the first of the two prefixes will be
returned by this property.

Syntax
SOAP
string = Response.Record().Name.Prefix

XML
<ResponseArray>

<Record>
<Name>

<Prefix>String</Prefix>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

40

Prefix2
Returns the second prefix (such as "Mr." or "Dr.") from a full name passed to
the Request Array.

Remarks
This property will return the second prefix from a full name passed to the Request
Array, if the name contained two names.

Syntax
SOAP
string = Response.Record().Name.Prefix2

XML
<ResponseArray>

<Record>
<Name>

<Prefix2>String</Prefix2>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

41

Salutation
Returns a generated salutation string for the name passed to the Request
Array.

Remarks
Returns the contents of the salutation string generated according to the preferences
set by OptSalutationPrefix, OptSalutationSlug and OptSalutationSuffix properties of
the Request Array.

Syntax
SOAP
string = Response.Record().Name.Salutation

XML
<ResponseArray>

<Record>
<Name>

<Salutation>String</Salutation>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

42

Suffix
Returns the first suffix (such as "Jr." or "III.") from a full name passed to the
Request Array.

Remarks
This property will return the suffix from a full name passed to the Request
Array. If the full name only contained a single name, the suffix of the first
name, if any, will be returned here. If two names were parsed, the first of the
two suffixes will be returned by this property.

Syntax
SOAP
string = Response.Record().Name.Suffix

XML
<ResponseArray>

<Record>
<Name>

<Suffix>String</Suffix>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

43

Suffix2
Returns the second suffix (such as "Sr." or "IV.") from a full name passed to
the Request Array.

Remarks
This property will return the second suffix from a dual name passed to the
Request Array, if the full name property contained two names.

Syntax
SOAP
string = Response.Record().Name.Suffix2

XML
<ResponseArray>

<Record>
<Name>

<Suffix2>String</Suffix2>
</Name>

</Record>
</ResponseArray>

 Chapter 4
Name Parser Response

44

Response Object XML Format
The following shows the structure of the XML document returned by the
Name Parser.

<?xml version="1.0" encoding="UTF-8"?>
<ResponseArray xmlns="urn:mdWebServiceEmail"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
>
<version>String</version>
<TransmissionReference>String
</TransmissionReference>
<Results>String</Results>
<TotalRecords>String</TotalRecords>

<Record>
<RecordID>String</RecordID>
<Results>String</Results>

<Name>
<Prefix>String</Prefix>
<First>String</First>
<Middle>String</Middle>
<Last>String</Last>
<Suffix>String</Suffix>
<Salutation>String</Salutation>
<Prefix2>String</Prefix2>
<First2>String</First2>
<Middle2>String</Middle2>
<Last2>String</Last2>
<Suffix2>String</Suffix2>

</Name>
</Record>

</ResponseArray>

	DQT_WS_NameParser_RG_Cover
	DQT_WS_NameParser_RG_NoCover.pdf
	Table of Contents
	Welcome to WebSmart Services
	An Introduction to Name Parser
	Adding WebSmart Name Parser to a Project
	Submitting an XML Request
	Building a REST Request

	Name Parser Request
	Request Elements
	Record Elements

	Name Parser Response
	Record Elements
	Response Object XML Format

