

WebSmart Email Verifier
Reference Guide

ii

Copyright
Companies, names, and data used in examples herein are fictitious unless otherwise noted. No
part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, for any purpose, without the express written permission of Melissa Data
Corporation. This document and the software it describes are furnished under a license
agreement, and may be used or copied only in accordance with the terms of the license
agreement.

© 2011. Melissa Data Corporation. All rights reserved.

Information in this document is subject to change without notice. Melissa Data Corporation
assumes no responsibility or liability for any errors, omissions, or inaccuracies that may appear in
this document.

Trademarks
WebSmart Email Verifier is a trademark of Melissa Data Corporation. Windows is a registered
trademark of Microsoft Corp.

The following are registrations and trademarks of the United States Postal Service: CASS, CASS
Certified, DMM, DPV, DSF2, eLOT, First-Class Mail, LACSLink, NCOALink, PAVE, Planet Code,
Post Office, Postal Service, RDI, Standard Mail, U.S. Postal Service, United States Post Office,
United States Postal Service, USPS, ZIP, ZIP Code, and ZIP + 4.

DSF2 processing is provided by a nonexclusive licensee of the United States Postal Service.
Melissa Data is a nonexclusive Interface Developer, Interface Distributor and NCOALink Full
Service Provider, DPV and LACSLink Licensee of the United States Postal Service. The prices for
NCOALink and DPV services are not established, controlled, or approved by the United States
Postal Service.

MELISSA DATA CORPORATION
22382 Avenida Empresa
Rancho Santa Margarita, CA 92688-2112
Phone: 1-800-MELISSA (1-800-635-4772)
Fax: 949-589-5211
E-mail: info@MelissaData.com
Web site: www.MelissaData.com

For the latest version of this Reference Guide, visit
http://www.MelissaData.com/tech/websmart.htm.

Document Code: WSERFG
Revision Number: 110621.104
Last Update: June 21, 2011

iii

Dear Programmer,

I would like to take this opportunity to introduce you to Melissa Data Corp.
Founded in 1985, Melissa Data provides data quality solutions, with
emphasis on address and phone verification, postal encoding, and data
enhancements.

We are a leading provider of cost-effective solutions for achieving the highest
level of data quality for lifetime value. A powerful line of software, databases,
components, and services afford our customers the flexibility to cleanse and
update contact information using almost any language, platform, and media
for point-of-entry or batch processing.

This online manual will guide you through the properties and methods of our
easy-to-use programming tools. Your feedback is important to me, so please
don't hesitate to email your comments or suggestions to
ray@MelissaData.com.

I look forward to hearing from you.

Best Wishes,

Raymond F. Melissa
President

iv

Table of Contents

Welcome to WebSmart Services... 1

An Introduction to Email Verifier... 4
Adding WebSmart Email Verifier Web Service to a Project 4
Submitting an XML Request.. 5
Building a REST Request.. 5

Email Verifier Request ... 6
Request Fields... 8
Record Fields .. 11

Email Verifier Response .. 14
Web Response XML Format ... 27

1

1 Welcome to WebSmart
Services

The WebSmart Services are a collection of services that can be accessed by
any application, allowing you to incorporate Melissa Data’s technology into
your programs without worrying about continually downloading and installing
updates.

Melissa Data currently offers the following services:

• Address Verifier — Verify and standardize one or more mailing
address. This service also appends ZIP + 4® and Carrier Route
information.

• Email Verifier — Verify, correct and update, domain names from one
or more email addresses.

• GeoCoder — Returns geographic, census, and demographic data for
almost any location in the United States.

• IP Locator — Returns name and geographic information for the
owner of a public IP address.

• Delivery Indicator — Indicates whether an address represents a
business or residential address.

• Name Parser — Parses and genderizes personal names and also
generates salutations for correspondence.

• Street Search — Searches a ZIP Code™ from street address ranges
matching a specific pattern and, optionally, a street number.

Welcome to WebSmart Services
Chapter 1

2

• ZIP Search — Matches city names with ZIP/Postal codes, ZIP/Postal
codes with city names and searches for city names matching a
pattern with a given state.

• Phone Verifier — Verifies and parses phone numbers, as well as
identifying phone numbers as residential, business, VOIP or wireless.

• Property — Returns basic or detailed information about the size,
ownership, and structures on a given parcel of land.

Both GeoCoder and Delivery Indicator work from an “address key” returned
by the Address Verifier service, therefore, an address must first be submitted
to the Address Verifier before you can use either of the other two services.

There are three ways to access the WebSmart Services:

• SOAP — The SOAP interface allows you to add the Web Service to
an application as if it were a component object or DLL. You can then
access the Web Service fields and execute commands as if they were
properties and methods.

• XML — The Web Service can also submit a request as an XML
document. It will then return the processed records as another XML
document that can be parsed using whatever XML tools you utilize in
your development environment.

• REST — This interface allows you to submit a single address record
as part of a URL string and returns the processed record as an XML
document identical to the one returned by the XML interface.

Using the REST service may require that you encode certain characters using
the proper URL entities before adding them to a URL. Characters like spaces,
slashes, ampersands and others must be replaced by special codes, which
usually consist of a percent sign followed by a two-digit hexadecimal number.

The following table shows the replacements for the most common characters.

Character URL Encoded

Space %20 or +

* %2A
%23

& %26

% %25
$ %28

Welcome to WebSmart Services
Chapter 1

3

Many modern programming languages have a URL encode and URL
decoding function that automates these character replacements.

Special Characters
Because the WebSmart Services are XML-based, certain characters cannot
be passed as data. They would be interpreted as part of the XML structure
and would cause errors. The following codes must be substituted for these
characters.

+ %2B

, %2C

/ %2F
: %3A

; %3B

< %3C
= %3D

> %3E

? %3F
@ %40

[%5B

] %5D
~ %7E

Character URL Encoded

& & (ampersand)

“ " (left/right quotes should be replaced with straight quotes)

‘ ' (apostrophe)
< < (less-than)

> > (greater-than)

Character URL Encoded

4

2 An Introduction to
Email Verifier

The WebSmart Email Verifier verifies that a submitted email address belongs
to a valid domain. It can correct common misspellings of domains and update
domain names if they have changed due to corporate mergers or other
situations. The service also parses the email into mailbox name (the part
before the “@”), the domain name and the top-level domain name (“.com,”
“.org” and so on).

There are three ways to access the web service.

Adding WebSmart Email Verifier
Web Service to a Project

If you are using the SOAP service with Visual Studio .NET, you need to add a
web reference to the service to your project. Click on the Project menu and
select Add Web Reference... Enter the following URL on the Add Web
Reference dialog box:

https://email.melissadata.net/v2/SOAP/Service.svc

If you are not using Visual Studio .NET, see the documentation for your SOAP
interface for the procedure for adding the service to your project.

An Introduction to Email Verifier
Chapter 2

5

Submitting an XML Request
After building your XML string from your data, an XML request to the web
service is submitted using an HTTP POST operation to the following URL:

https://email.melissadata.net/v2/XML/Service.svc/
doEmailCheck

Building a REST Request
Query strings are sent to the web service as part of the URL using an HTTP
Get operation appended to following URL:

https://email.melissadata.net/v2/REST/Service.svc/
doEmailCheck

Many modern programming language have a URL encode and URL decoding
function that automates these character replacements.

6

3 Email Verifier Request

At the very minimum, a request to the WebSmart Email Verifier consists of the
user’s Customer ID and at least one email address.

SOAP Request
The following Visual Basic Code shows a simple order of operations for
building and submitting a RequestArray object, submitting it to the web
service and retrieving a response object.

Step 1 – Create the Request and Response Objects
Dim ReqEmail As New dqwsEmail.RequestArray
Dim ResEmail As New dqwsEmail.ResponseArray

Step 2 – Assign the General Field Values
There are two properties of the Request Array object that apply to the request
as a whole. CustomerID is required.

ReqEmail.CustomerID = strCustID
ReqEmail.TransmissionReference = strTranRef

The Transmission Reference is a unique string value that identifies this
request array.

Email Verifier Request
Chapter 3

7

Step 3 – Dimension the Record Array
The maximum number of records per request is 100, therefore the largest
dimension will be 99.

ReDim ReqEmail.Record(99)

For maximum efficiency, you should dimension the array using the exact
number of records being submitted minus one.

Step 4 – Build the Record Array
The exact method for building the array will depend on the exact database
software in use, but you will need to loop through every record to be submitted
and assign the required values to the corresponding fields for each record in
the RequestArray.

ReqEmail.Record(intRecord) = New
dqwsEmail.RequestArrayRecord

ReqEmail.Record(intRecord).Email =
"ray@mailerssoftware.com"

ReqEmail.Record(intRecord).RecordID = 1

The lines above show only the fields that are absolutely required to submit a
record to the web service. See the rest of this chapter for a description of all of
the fields available to include with a request record.

Repeat for each record being submitted with the current RequestArray.

Step 5 – Submit the Request Array
The final step is to create the Service Client Object and then submit the
RequestArray object doEmail method. This sends the data to the web service
and retrieves the ResponseArray object.

EmailClient = New dqwsEmail.Service
ResEmail = EmailClient.doEmailCheck(ReqEmail)
EmailClient.Dispose()

XML Request
The raw XML request is built using whatever XML tools are available via your
development tools and submitted to the following URL using an HTTP POST
request.

https://email.melissadata.net/v2/XML/Service.svc/
doEmailCheck

Email Verifier Request
Chapter 3

8

Rather than an array of Record object, an XML request contains a <Record>
element for each address record, up to 100.

The following XML Code contains the same request as the SOAP example
above.

<RequestArray>
<TransmissionReference>Web Service Test 2008/12/31
</TransmissionReference>
<CustomerID>123456789</CustomerID>
<Record>

<RecordID>1</RecordID>>
<Email>ray@mailerssoftware.com</Email>

</Record>
<Record>
...
</Record>

</RequestArray>

REST Request
A REST request can submit a single address record via an HTTP GET. The
following example uses the same address as the SOAP and XML samples.

https://email.melissadata.net/v2/REST/Service.svc/
doEmailCheck?id=12345678&t=RestTest&email=
ray%40mailerssoftware.com

Remember that the “@” must be replaced by a URL entity before submitting
the REST request to the web service.

The record ID field does not exist for the REST interface, since you can only
submit a single record per request.

Request Fields
The following section lists the fields that set the basic options for each and
identify the user to the web service.

Email Verifier Request
Chapter 3

9

Customer ID
This is a required string value containing the identifier number issued to the
customer when signing up for the WebSmart Services.

Remarks
You need a customer ID to access any Melissa Data web service. If this field
is not populated, the web service will return an error. To receive a customer
ID, call your Melissa Data sales representative at 1-800-MELISSA.

Syntax
SOAP
Request.CustomerID = string

XML
<RequestArray>

<CustomerID>String</CustomerID>
</RequestArray>

REST
id={CustomerID}

Email Verifier Request
Chapter 3

10

Transmission Reference
This is an optional string value that may be passed with each Request Array
to serve as a unique identifier for this set of records.

Remarks
This value is returned as sent by the Response Array, allowing you to match
the Response to the Request.

Syntax
SOAP
Request.TransmissionReference = string

XML
<RequestArray>

<TransmissionReference>String</TransmissionReference>
</RequestArray>

REST
t={transMissionReference}

Email Verifier Request
Chapter 3

11

Record Fields
For the SOAP and XML services, the Request Array will contain an element or
property called Record. In SOAP this property is an array of object variables
of the type Record. XML will have as many Record elements as there are
addresses being submitted to the web service.

The REST interface only allows a single record per request.

Email Verifier Request
Chapter 3

12

Record ID
This field is a string value containing a unique identifier for the current record.

Remarks
Use this field to match the record with the record returned with the Response
Array.

When using the SOAP interface, if this field is not populated, the web service
will automatically insert a sequential number for each record.

There is no equivalent for Record ID for the REST interface.

Syntax
SOAP
Request.Record().RecordID = string

XML
<RequestArray>

<Record>
<RecordID>String</RecordID>

</Record>
</RequestArray>

Email Verifier Request
Chapter 3

13

Email
This field must contain a well-formed email address.

Remarks
A well-formed email address contains a mailbox and a domain name
separated by a “@” character.

Syntax
SOAP
Request.Record().Email = string

XML
<RequestArray>

<Record>
<Email>String</Email>

</Record>
</RequestArray>

REST
email={Email}

14

4 Email Verifier Response

The SOAP interface for the Email Verifier service returns a ResponseArray
Object. The primary component of this object is an array of Record objects,
one for each record submitted with the RequestArray, containing the verified
and standardized email address.

The XML interface returns an XML document containing a number of
<Record> elements, one for each record submitted with the Request,
containing the verified and standardized email address.

The REST interface returns an XML document with a single <Record>
element.

Email Verifier Response
Chapter 4

15

TransmissionReference
Returns a string value containing the contents of the TransmissionReference
field from the original Request.

Remarks
If you passed any value to the TransmissionReference field when building
your request, it is returned here. You can use this property to match the
response to the request.

Syntax
SOAP
string = Response.TransmissionReference

XML
<ResponseArray>

<TransmissionReference>
String

</TransmissionReference>
</ResponseArray>

Email Verifier Response
Chapter 4

16

Total Records
Returns a string value containing the number of records returned with the
current response.

Remarks
This property returns the number of records processed and returned by the
response as a string value.

Syntax
SOAP
string = Response.TotalRecords

XML
<ResponseArray>

<TotalRecords>String</TotalRecords>
</ResponseArray>

Email Verifier Response
Chapter 4

17

Results
Returns a string value containing the general and system error messages
from the most recent request sent to the service.

Remarks
Do not confuse this field with the Results field returned with each record,
described on page 21. This field returns error messages caused by the most
recent request as a whole.

The possible values are:

Code Description

SE01 Web Service internal error.

GE01 General Error — Empty XML request structure.

GE02 General Error — Empty XML request record structure.

GE03
General Error — Counted records send more than number of
records allowed per request.

GE04 General Error — CustomerID is empty.

GE05 General Error — CustomerID is invalid.

GE06 General Error — CustomerID is disabled.
GE07 General Error — XML request is invalid.

Syntax
SOAP
string = Response.Results

XML
<ResponseArray>

<Results>String</Results>
</ResponseArray>

Email Verifier Response
Chapter 4

18

Version
Returns a string value containing the current version number of the Email
Verifier Service.

Syntax
SOAP
string = Response.Version

XML
<ResponseArray>

<Version>String</Version>
</ResponseArray>

Email Verifier Response
Chapter 4

19

Record Fields
The SOAP version of the Response Array returns a property called Record
which is an array of Record objects, one for each record submitted with the
original Request Array.

The XML service returns one <Record> element for every record submitted
with the original request.

The REST response is identical to the XML response, but will only contain a
single <Record> element.

The following section describes the fields returned by each record in the
Response Array.

Email Verifier Response
Chapter 4

20

Record ID
For each record in the Response Array, this field returns a string value
containing the unique identifier for the current record if one was passed to the
Request Array.

Remarks
Use this field to match the record in the Response Array with the record
originally passed with the request.

Syntax
SOAP
string = Response.Record().RecordID

XML
<ResponseArray>

<Record>
<RecordID>String</RecordID>

</Record>
</ResponseArray>

Email Verifier Response
Chapter 4

21

Results
For each record in the Response Array, this field returns a string value
containing status and error codes for the current record. Multiple codes are
separated by commas.

Remarks
This field returns the status and error messages for each record in the
Response Array. For the general status and error messages generated by the
most recent Email request, see the general Result field on page 17.

The Result field may return one or more four-character strings, separated by
commas, depending on the result generated by the current record.

If the address in the current record was verified, this field will contain the value
“ES01” at the very minimum and may include more of the “ES” codes. If the
address could not be verified, the codes beginning with “EE” will indicate the
reason or reasons why verification failed.

The possible values are:

Code Status/Error Description

ES01 Valid Email Domain The domain name of the submitted
email address was confirmed as valid
by either the DatabaseLookup or
MXLookup

ES02 Invalid Email Domain The domain name of the submitted
email address was either not located by
MXLookup or was located on the list of
invalid domains.

ES03 Unverified Email Domain The domain name of the submitted
email address was not confirmed as
valid by either DatabaseLookup or
MXLookup, but was not found on the list
of invalid domain names.

ES04 Mobile Email Address The domain name of the submitted
email was identified as a mobile email
address, classified as not deliverable by
FCC regulations.

ES10 Syntax Was Changed The syntax of the submitted email
address was changed.

Email Verifier Response
Chapter 4

22

ES11 Top Level Domain Changed. The top level domain of the submitted
email address was changed.

ES12 Domain Changed (Spelling) The domain of the submitted email
address was corrected for spelling.

ES13 Domain Changed (Update) The domain of the submitted email
address was updated due to a domain
name change.

EE01 Syntax Error There is a syntax error in the submitted
email address.

EE02 Top Level Domain Not Found The top level domain of the submitted
email address was not found.

EE03 Mail Server Not Found The mail server (domain) of the
submitted email address was not found.

EE04 Invalid Mailbox Name An invalid mailbox name was detected
(IE: noreply). To configure invalid
mailbox names, review
mdEmailConfig.ini.

DE Email Address was empty. Submitted email address field was an
empty string or null value.

Syntax
SOAP
string = Response.Record().Results

XML
<ResponseArray>

<Record>
<Results>String</Results>

</Record>
</ResponseArray>

Code Status/Error Description

Email Verifier Response
Chapter 4

23

EmailAddress
For each record in the Response Array, this field returns the updated,
corrected email address.

Remarks
If the submitted address could not be verified, this will return the contents of
the Email field submitted with the Request Array.

Syntax
SOAP
string = Response.Record().Email.EmailAddress

XML
<ResponseArray>

<Record>
<Email>

<EmailAddress>String</EmailAddress>
</Email>

</Record>
</ResponseArray>

Email Verifier Response
Chapter 4

24

Domain Name
For each record in the Response Array, this field returns the domain name
portion of the email address passed to the Request Array record, excluding
the Top Level Domain, including any changes or corrections that have been
made by the WebSmart Email Verifier.

Remarks
This field returns a string value containing the domain name portion of the
corrected email address. For example, it returns all characters that come after
the “@” character, not including the Top Level Domain, such as “.com.” If the
final address is “jsmith@melissadata.com,” this property just returns
“melissadata.”

To get the full domain name, combine the results of this field with a “.”
character and the contents of the TopLevelDomain Name field.

Syntax
SOAP
string = Response.Record().Email.DomainName

XML
<ResponseArray>

<Record>
<Email>

<DomainName>String</DomainName>
</Email>

</Record>
</ResponseArray>

Email Verifier Response
Chapter 4

25

Mailbox Name
For each record in the Response Array, this field returns the mailbox or user
name portion of the email address passed to the VerifyEmail address,
including any changes or corrections that have been made by the Web
Service.

Remarks
This field returns a string value containing the mailbox name or user name
portion of the email address (all characters that precede the “@” character). If
the final address is “jsmith@melissadata.com,” this property returns “jsmith.”

Syntax
SOAP
string = Response.Record().Email.MailboxName

XML
<ResponseArray>

<Record>
<Email>

<MailboxName>String</MailboxName>
</Email>

</Record>
</ResponseArray>

Email Verifier Response
Chapter 4

26

Top Level Domain
For each record in the Response Array, the Name field returns the Top Level
Domain name portion of the email address passed to the Web Service
address, including any changes or corrections that have been made by the
Web Service. The Description field returns the long-form description of the
Top Level Domain name portion of the email address.

Remark
The Name field returns a string value containing the Top Level Domain name
portion of the corrected email address, such as “com”. If the final address is
“jsmith@melissadata.com,” this field returns “com.”

Syntax
SOAP
string = Response.Record().Email.TopLevelDomain.Name
string = Response.Record().Email.TopLevelDomain.Description

XML
<ResponseArray>

<Record>
<Email>

<TopLevelDomain>
<Name>String</Name>
<Description>String</Description>

</TopLevelDomain>
</Email>

</Record>
</ResponseArray>

Email Verifier Response
Chapter 4

27

Web Response XML Format
The following shows the structure of the XML document returned by the Email
Verifier Service.

<?xml version="1.0" encoding="UTF-8"?>
<ResponseArray xmlns="urn:mdWebServiceEmail"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
>
<Version>String</Version>
<TransmissionReference>String
</TransmissionReference>
<Results>String</Results>
<TotalRecords>String</TotalRecords>

<Record>
<RecordID>String</RecordID>
<Results>String</Results>

<Email>
<EmailAddress>string</EmailAddress>
<DomainName>string</DomainName>
<MailboxName>string</MailboxName>
<TopLevelDomain>

<Name>string</Name>
<Description>string</Description>

</TopLevelDomain>
</Email>

</Record>
</ResponseArray>

	Table of Contents
	Welcome to WebSmart Services
	Special Characters

	An Introduction to Email Verifier
	Adding WebSmart Email Verifier Web Service to a Project
	Submitting an XML Request
	Building a REST Request

	Email Verifier Request
	SOAP Request
	XML Request
	REST Request
	Request Fields
	Record Fields

	Email Verifier Response
	Record Fields
	Web Response XML Format

