

WebSmart Address
Verifier

Reference Guide

ii

Copyright
Companies, names, and data used in examples herein are fictitious unless otherwise noted. No
part of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, for any purpose, without the express written permission of Melissa Data
Corporation. This document and the software it describes are furnished under a license
agreement, and may be used or copied only in accordance with the terms of the license
agreement.

© 2013. Melissa Data Corporation. All rights reserved.

Information in this document is subject to change without notice. Melissa Data Corporation
assumes no responsibility or liability for any errors, omissions, or inaccuracies that may appear in
this document.

Trademarks
Address Verifier is a trademark of Melissa Data Corporation. Windows is a registered trademark
of Microsoft Corp.

The following are registrations and trademarks of the United States Postal Service: CASS, CASS
Certified, DMM, DPV, DSF2, eLOT, First-Class Mail, LACSLink, NCOALink, PAVE, Planet Code,
Post Office, Postal Service, RDI, Standard Mail, U.S. Postal Service, United States Post Office,
United States Postal Service, USPS, ZIP, ZIP Code, and ZIP + 4.

DSF2 processing is provided by a nonexclusive licensee of the United States Postal Service.
Melissa Data is a nonexclusive Interface Developer, Interface Distributor and NCOALink Full
Service Provider, DPV and LACSLink Licensee of the United States Postal Service. The prices for
NCOALink and DPV services are not established, controlled, or approved by the United States
Postal Service.

MELISSA DATA CORPORATION
22382 Avenida Empresa
Rancho Santa Margarita, CA 92688-2112
Phone: 1-800-MELISSA (1-800-635-4772)
Fax: 949-589-5211
E-mail: info@MelissaData.com
Web site: www.MelissaData.com
For the latest version of this Reference Guide, visit
http://www.MelissaData.com/tech/websmart.htm.

Document Code: WSARFG
Revision Number: 130701.032
Last Update: July 1, 2013

http://www.MelissaData.com/tech/websmart.htm

iii

Dear Programmer,

I would like to take this opportunity to introduce you to Melissa Data Corp.
Founded in 1985, Melissa Data provides data quality solutions, with
emphasis on address and phone verification, postal encoding, and data
enhancements.

We are a leading provider of cost-effective solutions for achieving the highest
level of data quality for lifetime value. A powerful line of software, databases,
components, and services afford our customers the flexibility to cleanse and
update contact information using almost any language, platform, and media
for point-of-entry or batch processing.

This online manual will guide you through the properties and methods of our
easy-to-use programming tools. Your feedback is important to me, so please
don't hesitate to email your comments or suggestions to
ray@MelissaData.com.

I look forward to hearing from you.

Best Wishes,

Raymond F. Melissa
President

iv

Table of Contents

Welcome to WebSmart Services... 1

An Introduction to Address Verifier .. 4
Address Handling .. 5
Adding Address Verifier to a Project.. 8
Submitting an XML Request.. 8
Building a REST Request.. 8

Address Verifier Request... 9
Request Elements ... 12
Record Elements ... 15

Address Verifier Response.. 27
Response Object XML Format .. 67
Using Result Codes: Coding for the present and the future 69

1

1 Welcome to WebSmart
Services

The WebSmart Services are a collection of services that can be accessed by
any application, allowing you to incorporate Melissa Data’s technology into
your programs without worrying about continually downloading and installing
updates.

Melissa Data currently offers the following services:

• Address Verifier — Verify and standardize one or more mailing
address. This service also appends ZIP + 4® and Carrier Route
information.

• Email Verifier — Verify, correct and update, domain names from one
or more email addresses.

• GeoCoder — Returns geographic, census, and demographic data for
almost any location in the United States. Uses multisource data to
return latitude and longitude down to rooftop accuracy of over 95% of
all physical addresses in the United States.

• IP Locator — Returns name and geographic information for the
owner of a public IP address.

• Delivery Indicator — Indicates whether an address represents a
business or residential address.

• Name Parser — Parses and genderizes personal names and also
generates salutations for correspondence.

 Chapter 1
Welcome to WebSmart Services

2

• Street Search — Searches a ZIP Code™ from street address ranges
matching a specific pattern and, optionally, a street number.

• ZIP Search — Matches city names with ZIP/Postal codes, ZIP/Postal
codes with city names and searches for city names matching a
pattern with a given state.

• Phone Verifier — Verifies and parses phone numbers, as well as
identifying phone numbers as residential, business, VOIP or wireless.

• Property — Returns basic or detailed information about the size,
ownership, and structures on a given parcel of land.

Both GeoCoder and Delivery Indicator work from an “address key” returned
by the Address Verifier service, therefore, an address must first be submitted
to the Address Verifier before you can use either of the other two services.

There are three ways to access the WebSmart Services:

• SOAP — The SOAP interface allows you to add the Web Service to
an application as if it were a component object or DLL. You can then
access the Web Service elements and execute commands as if they
were properties and methods.

• XML — The Web Service can also submit a request as an XML
document. It will then return the processed records as another XML
document that can be parsed using whatever XML tools you utilize in
your development environment.

• REST — This interface allows you to submit a single address record
as part of a URL string and returns the processed record as an XML
document identical to the one returned by the XML interface.

Using the REST service may require that you encode certain characters using
the proper URL entities before adding them to a URL. Characters like spaces,
slashes, ampersands and others must be replaced by special codes, which
usually consist of a percent sign followed by a two-digit hexadecimal number.

The following table shows the replacements for the most common characters.

Character URL Encoded

Space %20 or +

* %2A

%23

& %26

% %25

 Chapter 1
Welcome to WebSmart Services

3

Many modern programming languages have a URL encode and URL
decoding function that automates these character replacements.

Special Characters
Because the WebSmart Services are XML-based, certain characters cannot
be passed as data. They would be interpreted as part of the XML structure
and would cause errors. The following codes must be substituted for these
characters.

Character URL Encoded

& & (ampersand)

“ " (left/right quotes should be replaced with straight quotes)

‘ ' (apostrophe)

< < (less-than)

> > (greater-than)

$ %28

+ %2B

, %2C

/ %2F

: %3A

; %3B

< %3C

= %3D

> %3E

? %3F

@ %40

[%5B

] %5D

~ %7E

Character URL Encoded

4

2 An Introduction to
Address Verifier

The WebSmart Address Verifier service helps to guarantee that your address
data contains a properly coded and standardized address.

The Address Verifier:

• Verifies that the record contains a deliverable address.

• Standardizes the street address using the preferred USPS
abbreviations.

• Flags undeliverable or incomplete addresses.

• Applies the correct ZIP + 4 if missing.

• Appends Carrier Route and Delivery Point numbers to the address
record.

• Optionally parses the street address.

 Chapter 2
An Introduction to Address Verifier

5

Address Handling
A key concept for Address Verifier is understanding how the service handles
address data. Address Verifier accepts two lines of street address information,
the AddressLine1 and AddressLine2 elements in each record of the Request
Array.

AddressLine1 will typically contain the primary street address (Street number,
street name, plus any directionals and street suffixes). It may or may not
contain also a secondary address, such as a suite number, address number,
unit number, or a private mailbox located at a commercial mail receiving
agency (CMRA).

AddressLine2 will often contain the secondary address information, if it is not
submitted as part of AddressLine1 or included in the Suite or PrivateMailBox
elements. This element may also be used if there is another primary address,
either a Post Office Box or a separate street address, that is part of the same
record.

If the secondary Address information is submitted in the AddressLine2
element, Address Verifier will append this information to AddressLine1 before
processing the record.

Example #1
If the following were submitted with the request:

AddressLine1: 1234 Main Street
AddressLine2: Suite #101

This is the address that would actually be verified:

AddressLine1: 1234 Main Street Suite #101
AddressLine2: <empty>

If there is an additional primary address in AddressLine2, such as a P.O. Box
or second street address, and the contents of AddressLine1 cannot be
verified, then Address Verifier will attempt to verify the second line.

Example #2
If the following were submitted with the request:

AddressLine1: 1234 Main Street
AddressLine2: P.O. Box 101

Assuming that AddressLine1 didn’t contain a verifiable address, this is what
Address Verifier would consider the contents of AddressLine2.

 Chapter 2
An Introduction to Address Verifier

6

If the AddressLine2 contains a verifiable address, then the contents of that
element will be used. In that case, Address Verifier will swap the contents of
AddressLine1 and AddressLine2 and the response array will return the
contents of these elements in this order:

Address1: P.O.Box 101
Address2: 1234 Main Street

If the contents of neither element can be successfully verified, then Address
Verifier will flag the error and the contents of AddressLine1 and AddressLine2
will be returned in their original order:

Address1: 1234 Main Street
Address2: P.O.Box 101

Secondary Addresses
Secondary addresses include suite numbers, unit numbers and residential
apartment numbers. It could also referred a private mailbox (PMB) at a
Commercial Mail Receiving Agency (CMRA).

The secondary address can be passed to Address Verifier at the end the first
address line, as the second address line or via the suite element.

The National Postal database identifies certain primary addresses as
highrises, business parks and apartment buildings. Therefore, Address
Verifier would be able to assign the correct secondary address designator to
the following address:

1234 Main St #101

For example, if the primary address were an apartment complex, Address
Verifier would return “Apt 101” as the suite information.

CMRAs like the UPS Store and other mailbox stores are a special case.
These are often located at shopping centers and the store itself will have a
suite number. This means that addresses located at a CMRA will often have
both a suite number and a PMB number, like this:

1234 Main Street
Suite C1 PMB#101

 Chapter 2
An Introduction to Address Verifier

7

CMRAs are identified in the national address database as this kind of
business.

Example:
1234 Main Street #101

Assuming that 1234 Main Street is identified in the national database as a
CMRA, the “#101” portion would be returned by the Private Mail Box element
rather than the Suite element.

Be aware that Address Verifier will always treat a second item of secondary
address information as a PMB number.

Example:
1234 Main Street
Suite C1 #101

Whether or not the primary address is identified in the database as a CMRA,
Address Verifier will identify the “#101” portion of the second line as a PMB
number and return this number in the Private Mailbox element.

Even if an address is identified as a CMRA, if a secondary address is
explicitly identified as a suite or anything other than private mailbox, this
information will be treated as a suite and not a PMB.

Example:
1234 Main Street
Suite 101

Assuming that the primary address belongs to a CMRA, because the
secondary address was supplied as “Suite 101,” this will be treated as a suite
number and not a PMB number. If the number 101 was meant to refer to a
PMB and there is not Suite 101 at this address, this would probably cause the
address to fail verification.

City or Postal Code Information
In order to verify any address, Address Verifier requires information on the
city, the state or province, and a ZIP or Postal code. With the city and the
state/province, the Address Verifier will determine the correct ZIP/Postal code
and use this to verify the address.

Conversely, if supplied with a correct ZIP/Postal code, Address Verifier can
look up the city and the state/province.

 Chapter 2
An Introduction to Address Verifier

8

Therefore either the ZIP/Postal code or the city plus the state/province are
required. If the supplied city and state/province do not match the ZIP/Postal
code, Address Verifier will use the city and state/province to look up the ZIP/
Postal code.

Adding Address Verifier to a
Project

If you are using the SOAP service with Visual Studio .NET, you need to add a
web reference to the service to your project. Click on the Project menu and
select Add Web Reference... Enter the following URL on the Add Web
Reference dialog box:

https://addresscheck.melissadata.net/v2/SOAP/Service.svc

If you are not using Visual Studio .NET, see the documentation for your SOAP
interface for the procedure for adding the service to your project.

Submitting an XML Request
After building your XML string from your data, an XML request to the web
service is submitted using an HTTP POST operation to the following URL:

https://addresscheck.melissadata.net/v2/XML/Service.svc/
doAddressCheck

Building a REST Request
Query strings are sent to the web service as part of the URL using an HTTP
Get operation appended to following URL:

https://addresscheck.melissadata.net/v2/REST/Service.svc/
doAddressCheck

9

3 Address Verifier
Request

At the very minimum, a request to the WebSmart Address Verifier consists of
the user’s Customer ID and at least one address record.

SOAP Request
The following Visual Basic Code shows a simple order of operations for
building and submitting a RequestArray object, submitting it to the Web
Service and retrieving a response object.

Step 1 – Create the Request and Response Objects
Dim ReqAddressCheck As New dqwsAddressCheck.RequestArray
Dim ResAddressCheck As New dqwsAddressCheck.ResponseArray

Step 2 – Assign the General Request Values
There are three properties of the Request Array object that apply to the
request as a whole. CustomerID is required.

ReqAddressCheck.CustomerID = strCustID
ReqAddressCheck.TransmissionReference = strTranRef
ReqAddressCheck.OptAddressParsed = True

The Transmission Reference is a unique string value that identifies this
request array.

 Chapter 3
Address Verifier Request

10

Step 3 – Dimension the Record Array
The maximum number of records per request is 100, therefore the largest
dimension will be 99.

ReDim ReqAddressCheck.Record(99)

For maximum efficiency, you should dimension the array using the exact
number of records being submitted minus one.

Step 4 – Build the Record Array
The exact method for building the array will depend on the exact database
software in use, but you will need to loop through every record to be
submitted and assign the required values to the corresponding elements for
each record in the RequestArray.

ReqAddressCheck.Record(intRecord) = New
dqwsAddressCheck.RequestArrayRecord

ReqAddressCheck.Record(intRecord).AddressLine1 = "22382
Avenida Empresa"

ReqAddressCheck.Record(intRecord).Zip = "92688"
ReqAddressCheck.Record(intRecord).RecordID = 1

The lines above show only the elements that are absolutely required to submit
a record to the web service. See the rest of this chapter for a description of all
of the elements available to include with a request record.

Repeat for each record being submitted with the current RequestArray.

Step 5 – Submit the Request Array
The final step is to create the Service Client Object and then submit the
RequestArray object doAddressCheck method. This sends the data to the
web service and retrieves the ResponseArray object.

AddressCheckClient = New dqwsAddressCheck.Service
ResAddressCheck =

AddressCheckClient.doAddressCheck(ReqAddressCheck)
AddressCheckClient.Dispose()

XML Request
The raw XML request is built using whatever XML tools are available via your
development tools and submitted to the following URL using an HTTP POST
request.

 Chapter 3
Address Verifier Request

11

https://addresscheck.melissadata.net/v2/XML/Service.svc/
doAddressCheck

Rather than an array of Record object, an XML request contains a <Record>
element for each address record, up to 100.

The following XML Code contains the same request as the SOAP example
above.

<RequestArray>
<TransmissionReference>Web Service Test 2008/12/31
</TransmissionReference>
<CustomerID>123456789</CustomerID>
<OptAddressParsed>True</OptAddressParsed>
<Record>

<RecordID>1</RecordID>>
<Company />
<LastName />
<Urbanization />
<AddressLine1>22382 Avenida Empresa</AddressLine1>
<AddressLine2 />
<Suite />
<City>Rancho Santa Margarita</City>
<State>CA</State>
<Zip>92688</Zip>
<Plus4 />
<Country />

</Record>
<Record>
...
</Record>

</RequestArray>

 Chapter 3
Address Verifier Request

12

REST Request
A REST request can submit a single address record via an HTTP GET. The
following example uses the same address as the SOAP and XML samples.

https://addresscheck.melissadata.net/v2/REST/Service.svc/
doAddressCheck?id=12345678&opt=true&a1=22382%20Avenida
%20Empresa&city=Rancho%20Santa%20Margarita&state=CA&zi
p=92688

The record ID element does not exist for the REST interface, since you can
only submit a single record per request.

Request Elements
The following section lists the elements that set the basic options for each and
identify the user to the Web Service.

Customer ID
This is a required string value containing the identifier number issued to the
customer when signing up for Melissa Data Web Services.

Remarks
You need a customer ID to access any Melissa Data Web Service. If this
element is not populated, the web service will return an error. To receive a
customer ID, call your Melissa Data sale representative at 1-800-MELISSA.

Syntax
SOAP
Request.CustomerID = string

XML
<RequestArray>

<CustomerID>String</CustomerID>
</RequestArray>

REST
id={CustomerID}

 Chapter 3
Address Verifier Request

13

optAddressedParsed
This is an optional string value that controls whether or not the Response
Array returns the parsed address data.

Remarks
If you send a string value of “True” with this element, the Address Verifier
service will parse the street address into its component parts.

If this element is not set to “True,” none of the child elements of <Parsed> will
be populated for any record in the Response Array.

Syntax
SOAP
Request.OptAddressParsed = string

XML
<RequestArray>

<OptAddressParsed>String</OptAddressParsed>
</RequestArray>

REST
opt={OptAddressParsed}

 Chapter 3
Address Verifier Request

14

Transmission Reference
This is an optional string value that may be passed with each Request Array
to serve as a unique identifier for this set of records.

Remarks
This value is returned as sent by the Response Array, allowing you to match
the Response to the Request.

Syntax
SOAP
Request.TransmissionReference = string

XML
<RequestArray>

<TransmissionReference>String</TransmissionReference>
</RequestArray>

REST
t={transMissionReference}

 Chapter 3
Address Verifier Request

15

Record Elements
For the SOAP and XML web services, the Request Array will contain an
element or property called Record. In SOAP this property is an array of object
variables of the type Record. XML will have as many Record elements as
there are addresses being submitted to the web service.

The REST interface only allows a single record per request.

 Chapter 3
Address Verifier Request

16

Record ID
This element is a string value containing a unique identifier for the current
record.

Remarks
Use this element to match the record with the record returned with the
Response Array.

When using the SOAP interface, if this element is not populated, the web
service will automatically insert a sequential number for each record.

There is no equivalent for Record ID for the REST interface.

Syntax
SOAP
Request.Record().RecordID = string

XML
<RequestArray>

<Record>
<RecordID>String</RecordID>

</Record>
</RequestArray>

 Chapter 3
Address Verifier Request

17

Company
This is an optional string value containing any company name associated with
the current address record.

Remarks
If a company name is supplied for a company that has been assigned a
specific Plus4 by the USPS, the address checking logic will return a more
accurate Plus4 code.

If a company name is not supplied, the address checking logic will still be able
to code the address but it will supply a more generic “street level default”
Plus4.

The Company element is also used by the SuiteLink functionality of the Web
Service. SuiteLink will append missing suite information to addresses that are
associated with the Company Name of the input address. Addresses that
have their Suite Information populated by SuiteLink will have a Result code of
AS14.

Syntax
SOAP
Request.Record().Company = string

XML
<RequestArray>

<Record>
<Company>String</Company>

</Record>
</RequestArray>

REST
comp={Company}

 Chapter 3
Address Verifier Request

18

Urbanization
This is an optional string value containing the Urbanization name for the
current address record. This element applies only to Puerto Rican addresses.

Remarks
The Urbanization Property is an optional element set by the user. It is only
used when attempting to correct addresses in Puerto Rico. If it is not set, the
address checking logic will still be able to code some records, but it may
produce more multiple matches than usual for Puerto Rican addresses. This
happens because the urbanization name is used to break ties when a ZIP
Code is linked to multiple instances of the same address.

The urbanization name tells the address checking logic which “neighborhood”
to look in if more than one likely address candidate is found.

If just one address is found, the address checking logic can correct the
address and return the urbanization name.

Syntax
SOAP
Request.Record().Urbanization = string

XML
<RequestArray>

<Record>
<Urbanization>String</Urbanization>

</Record>
</RequestArray>

REST
u={Urbanization}

 Chapter 3
Address Verifier Request

19

AddressLine1
This is a required string value containing the first line of the street address
from the current address record.

Remarks
This element must be passed with each record and contain the primary street
address for that record. It may also contain the suite or other secondary
address information, if this is not sent separately with those respective
elements.

Syntax
SOAP
Request.Record().AddressLine1 = string

XML
<RequestArray>

<Record>
<AddressLine1>String</AddressLine1>

</Record>
</RequestArray>

REST
a1={AddressLine1}

 Chapter 3
Address Verifier Request

20

AddressLine2
This is an optional string value containing the second line of the street
address, if any, from the current address record.

Remarks
This element is optional. It can contain either a suite, apartment or unit
number. It may also a different primary address such as a P.O. Box.

To see how Address Verifier handles information found in AddressLine2, see
the section called Address Handling on page 5 of this manual.

Syntax
SOAP
Request.Record().AddressLine2 = string

XML
<RequestArray>

<Record>
<AddressLine2>String</AddressLine2>

</Record>
</RequestArray>

REST
a2={AddressLine2}

 Chapter 3
Address Verifier Request

21

Suite
This is an optional string value containing the suite name and number for the
current record.

Remarks
Use this element to send the suite number if that information is stored
separately from the street address in your original data.

The suite information will also be detected if it is part of the AddressLine1
element or stored in AddressLine2. Use this element if your original database
table has an explicit Suite element of its own.

Syntax
SOAP
Request.Record().Suite = string

XML
<RequestArray>

<Record>
<Suite>String</Suite>

</Record>
</RequestArray>

REST
ste={suite}

 Chapter 3
Address Verifier Request

22

City
This is a required string value containing the city or municipality name for the
current record.

Remarks
When submitting an address record, you have the option of using either City
and State or at least five-digit ZIP Code or six-character Postal Code. For
example, if you set City as “Rancho Santa Margarita” and State as “CA,” that
would be the same as setting the Zip element to “92688.”

You must at least set both the City and State element OR the Zip element.

If you set all three elements and the contents of the Zip element are not
correct for values for the City and State elements, the web service will use the
City and State elements to determine the correct ZIP Code.

Syntax
SOAP
Request.Record().City = string

XML
<RequestArray>

<Record>
<City>String</City>

</Record>
</RequestArray>

REST
city={City}

 Chapter 3
Address Verifier Request

23

State
This is a required string value containing the name or abbreviation for the
state or province for the current record.

Remarks
When submitting an address record, you have the option of using either City
and State or at least the five-digit ZIP Code or six-character Postal Code. For
example, if you set City as “Rancho Santa Margarita” and State as “CA,” that
would be the same as setting the Zip element to “92688.”

You must at least set both the City and State element OR the Zip element.

If you set all three elements and the contents of the Zip element are not
correct for values for the City and State elements, the web service will use the
City and State elements to determine the correct ZIP Code.

Syntax
SOAP
Request.Record().State = string

XML
<RequestArray>

<Record>
<State>String</State>

</Record>
</RequestArray>

REST
state={State}

 Chapter 3
Address Verifier Request

24

Zip
This is a required string value containing ZIP or Postal code for the current
record.

Remarks
When submitting an address record, you have the option of using either City
and State or at least the five-digit ZIP Code or six-character Postal Code. For
example, if you set city as “Rancho Santa Margarita” and State as “CA,” that
would be the same as setting the Zip element to “92688.”

You must at least set both the City and State element OR the Zip element.

If you set all three elements and the ZIP Code is not correct for the City and
State, the web service will use the City and State elements to determine the
correct ZIP Code.

Syntax
SOAP
Request.Record().Zip = string

XML
<RequestArray>

<Record>
<Zip>String</Zip>

</Record>
</RequestArray>

REST
zip={Zip}

 Chapter 3
Address Verifier Request

25

Country
This is an optional string value containing the name or abbreviation of the
country for the current address record.

Remarks
The web service can only verify addresses in the United States or Canada.

Syntax
SOAP
Request.Record().Country = string

XML
<RequestArray>

<Record>
<Country>String</Country>

</Record>
</RequestArray>

REST
ctry={Country}

 Chapter 3
Address Verifier Request

26

LastName
Sets the last name associated with a residential address. This property is
required to use the AddressPlus functionality.

Remarks
AddressPlus enables Address Check to assign secondary numbers
(Apartment numbers, unit numbers for certain residential addresses. In
addition to the basic address information (the Address element plus the City,
State and Zip element), you must also submit the correct last name
associated with the address record to enable the service to distinguish the
record from other suites at the same address. If an addresses have this
Information appended by AddressPlus, the Response array will return a result
code of “AS15.”

AddressPlus is only available for U.S. addresses.

Syntax
SOAP
Request.Record().LastName = string

XML
<RequestArray>

<Record>
<LastName>String</LastName>

</Record>
</RequestArray>

REST
last={LastName}

27

4 Address Verifier
Response

The SOAP interface for the Address Verifier service returns a ResponseArray
Object. The primary component of this object is an array of Record objects,
one for each record submitted with the RequestArray, containing the verified
and standardized address data.

The XML interface returns an XML document containing a number of
<Record> elements, one for each record submitted with the Request,
containing the verified and standardized address data.

The REST interface returns an XML document with a single <Record>
element.

 Chapter 4
Address Verifier Response

28

TransmissionReference
Returns a string value containing the contents of the TransmissionReference
element from the original Request.

Remarks
If you passed any value to the TransmissionReference element when building
your request, it is returned here. You can use this property to match the
response to the request.

Syntax
SOAP
string = Response.TransmissionReference

XML
<ResponseArray>

<TransmissionReference>
String

</TransmissionReference>
</ResponseArray>

 Chapter 4
Address Verifier Response

29

Total Records
Returns a string value containing the number records returned with the
current response.

Remarks
This property returns the number of records processed and returned by the
response as a string value.

Syntax
SOAP
string = Response.TotalRecords

XML
<ResponseArray>

<TotalRecords>String</TotalRecords>
</ResponseArray>

 Chapter 4
Address Verifier Response

30

Results
Returns a string value containing the general and system error messages
from the most recent request sent to the service.

Remarks
Do not confuse this element with the Results element returned with each
record, described on page 34. This element returns error messages caused
by the most recent request as a whole.

The possible values are:

Code Description

SE01 Web Service internal error.

GE01 General Error — Empty XML request structure.

GE02 General Error — Empty XML request record structure.

GE03
General Error — Counted records send more than number of
records allowed per request.

GE04 General Error — CustomerID is empty.

GE05 General Error — CustomerID is invalid.

GE06 General Error — CustomerID is disabled.

GE07 General Error — XML request is invalid.

Syntax
SOAP
string = Response.Results

XML
<ResponseArray>

<Results>String</Results>
</ResponseArray>

 Chapter 4
Address Verifier Response

31

Version
Returns a string value containing the current version number of the Address
Verifier service.

Syntax
SOAP
string = Response.Version

XML
<ResponseArray>

<Version>String</Version>
</ResponseArray>

 Chapter 4
Address Verifier Response

32

Record Elements
The SOAP version of the Response Array returns a property called Record
which is an array of Record objects, one for each record submitted with the
original Request Array.

The XML service returns one <Record> element for every record submitted
with the original request.

The REST response is identical to the XML response, but will only contain a
single <Record> element.

The following section describes the elements returned by each record in the
Response Array.

 Chapter 4
Address Verifier Response

33

Record ID
For each record in the Response Array, this element returns a string value
containing the unique identifier for the current record if one was passed to the
Request Array.

Remarks
Use this element to match the record in the Response Array with the record
originally passed with the request.

Syntax
SOAP
string = Response.Record().RecordID

XML
<ResponseArray>

<Record>
<RecordID>String</RecordID>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

34

Results
For each record in the Response Array, returns a string value containing
status and error codes for the current record. Multiple codes are separated by
commas.

Remarks
This element returns the status and error messages for each record in the
Response Array. For the general status and error messages generated by the
most recent AddressCheck request, see the general Results element on
page 30.

The Result element may return one or more four-character strings, separated
by commas, depending on the result generated by the current record.

If the address in the current record was verified, this element will contain the
value “AS01” at the very minimum and may include more of the “AS” codes. If
the address could not be verified, the codes beginning with “AE” will indicate
the reason or reasons why verification failed.

The possible values are:

Code
U.S.
Only Meaning Details

Status Result Codes

AS01 Address Matched to
Postal Database

Street Address is valid and deliverable.
Check AE08 and AE09 for full
deliverability.

AS02 Street Address Match Address street matched to USPS
database but a suite was missing or
invalid.

AS10 Y Address Matched to
CMRA

Address belongs to a Commercial Mail
Receiving Agency (CMRA) like The
UPS Store®.

AS13 Y Address has been
Updated by LACSLink

Address has been converted by
LACSLink® from a rural-style address to
a city-style address.

AS14 Y Suite Appended by
SuiteLink

A suite was appended by SuiteLink™
using the address and company name.

AS15 Y Suite Appended by
AddressPlus

A suite was appended by AddressPlus
using the address and last name.

 Chapter 4
Address Verifier Response

35

AS16 Address is vacant Address has been unoccupied for 90
days or more.

AS17 Alternate delivery Address does not receive mail at this
time.

AS18 Y DPV Error Call 1-800-Melissa Tech Support for
assistance.

AS20 Y This address is
deliverable by USPS
only.

Alternate carriers such as UPS and
Fed Ex do not deliver to this address.

AS23 Extraneous Information
Found

Information found in input street
address that was not used for
verification. This information was
returned by the GetParsedGarbage
function.

Error Result Codes

AE01 Zip Code Error The Postal Code does not exist and
could not be determined by the city/
municipality and state/province.

AE02 Unknown Street Error An exact street name match could not
be found and phonetically matching the
street name resulted in either no
matches or matches to more than one
street name.

AE03 Component Mismatch
Error

Either the directionals or the suffix
element did not match the post office
database, or there was more than one
choice for correcting the address.

AE04 Non-Deliverable
Address Error

The physical location exists but there
are no homes on this street. One
reason might be railroad tracks or rivers
running alongside this street, as they
would prevent construction of homes in
this location.

Code
U.S.
Only Meaning Details

 Chapter 4
Address Verifier Response

36

AE05 Multiple Match Error Address matched to multiple records.
More than one record matches the
address and there is not enough
information available in the input
address to break the tie between
multiple records.

AE06 Y Early Warning System
Error

This address has been identified in the
Early Warning System (EWS) data file
and should be included in the next
postal database update.

AE07 Missing Minimum
Address Input Error

Minimum required input of address/city/
state or address/zip not found.

AE08 Suite Range Invalid
Error

The input street address was found but
the input suite number was not valid.

AE09 Suite Range Missing
Error

The input street address was found but
a required suite number is missing.

AE10 Primary Range Invalid
Error

The street number in the input address
was not valid.

AE11 Primary Range Missing
Error

The street number in the input address
was missing.

AE12 Y PO, HC, or RR Box
Number Invalid Error

The input address PO, RR or HC
number was invalid.

AE13 Y PO, HC, or RR Box
Number Missing Error

The input address is missing a PO, RR,
or HC Box number.

AE14 Y CMRA Secondary
Missing Error

Address Matched to a CMRA Address
but the secondary (Private mailbox
number) is missing.

AE17 Suite Range
Extraneous Error

A suite number was entered but no
suite information found for primary
address.

Change Codes

AC01 ZIP Code Change The five-digit ZIP Code™ was added or
corrected based on the city and state
names.

Code
U.S.
Only Meaning Details

 Chapter 4
Address Verifier Response

37

AC02 State Change The state name was corrected based
on the combination of city name and
ZIP Code.

AC03 City Change The city name was added or corrected
based on the ZIP Code.

AC04 Base/Alternate Change Some addresses have alternate names,
often chosen by the owner or resident
for clarity or prestige.

This change code indicates that the
address from the official, or “base,”
record has been substituted for the
alternate.

AC05 Alias Change An alias is a common abbreviation for a
long street name, such as “MLK Blvd”
for “Martin Luther King Blvd.”

This change code indicates that the full
street name has been substituted for
the alias.

AC06 Address1/Address2
Swap

The value passed to SetAddress could
not be verified, but SetAddress2 was
used for verification. The value passed
to the SetAddress function will be
returned by the GetAddress2 function.

AC07 Address1/Company
Swap

A Company name was detected in
address line 1 and moved to the
GetCompany function.

AC08 Plus4 Change A non-empty Plus4 was changed.

AC09 Urbanization Change The Urbanization was changed.

AC10 Street Name Change The street name was changed due to a
spelling correction.

AC11 Suffix Change The street name suffix was corrected,
such as from “St” to “Rd.”

AC12 Street Directional
Change

The street pre-directional or post-
directional was corrected, such as from
“N” to “NW.”

Code
U.S.
Only Meaning Details

 Chapter 4
Address Verifier Response

38

Using Result Codes in your Program:
These result codes are designed to let you easily determine if an address is
“good” or “bad.” A good address will contain AS01, a bad one will not.

If you have other conditions for a good address, you can add them as well.
For example, if you are not using USPS and cannot deliver to a PO Box or a
Military address, you can exclude records that return the result code “AS12.”

After determining if the address is “good” or “bad,” you can check for errors
(AE##) to see what was wrong with the address.

Syntax
SOAP
string = Response.Record().Result

XML
<ResponseArray>

<Record>
<Results>String</Results>

</Record>
</ResponseArray>

AC13 Suite Name Change The unit type designator for the
secondary address was changed, such
as from “STE” to “APT.”

Code
U.S.
Only Meaning Details

 Chapter 4
Address Verifier Response

39

Company
For each record in the Response Array, this element returns the string value
containing the contents of the Company element from the matching record
from the Request Array.

Remarks
The web service does not populate this element, nor does it modify the
contents of the Company element from the Request Array.

Syntax
SOAP
string = Response.Record().Result

XML
<ResponseArray>

<Record>
<Address>

<Company>String</Company>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

40

Urbanization
For each record in the Response Array, Urbanization Code returns a string
value containing the six-digit code number for the Urbanization connected
with the current address. Urbanization Name returns a string value containing
the name of the Urbanization.

Remarks
Urbanization will only be returned for addresses in Puerto Rico. See page 18
for more information on how Urbanization is used.

Syntax
SOAP
string = Response.Record().Address.Urbanization.Name

XML
<ResponseArray>

<Record>
<Address>

<Urbanization>
<Name>String</Name>

</Urbanization>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

41

Address1
For each record in the Response Array, Address1 returns a string value
containing the street address that the web service attempted to verify.

Remarks
This element returns the standardized contents of the AddressLine1 element
from the matching record in the Request Array.

If the AddressLine1 element contained any suite or secondary address
information, this will be moved to the Suite or PrivateMailBox element. See
Address Handling on page 5 for more information.

Syntax
SOAP
string = Response.Record().Address.Address1

XML
<ResponseArray>

<Record>
<Address>

<Address1>String</Address1>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

42

Address2
For each record in the Response Array, Address2 returns a string value
containing the secondary street address.

Remarks
This element returns the contents of the AddressLine2 element from the
matching record in the Request Array.

If the AddressLine2 element contained any suite or secondary address
information, this will be moved to the Suite or PrivateMailBox element.

For more information, see Address Handling on page 5.

Syntax
SOAP
string = Response.Record().Address.Address2

XML
<ResponseArray>

<Record>
<Address>

<Address2>String</Address2>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

43

Suite
For each record in the Response Array, Suite returns a string value containing
the standardized suite information for the current address.

Remarks
If the suite information was included as part of AddressLine1 or AddressLine2
in the Request Array, it will be moved to this property when the record is
returned by the Response Array.

When the suite number cannot be verified, it will be passed along unmodified.
If the address can be verified down to the suite level, the suite number will
also be standardized.

Syntax
SOAP
string = Response.Record().Address.Suite

XML
<ResponseArray>

<Record>
<Address>

<Suite>String</Suite>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

44

Private Mail Box
For each record in the Response Array, PrivateMailBox returns a string value
containing a private mailbox number (PMB) for an address assigned to a
Commercial Mail Receiving Agency (CMRA).

Remarks
CMRAs are private businesses that provide a mailing address and “post
office” box for their customers.

Mail is delivered by the Postal Service to the CMRA, which then distributes
the mail to the customer’s private mail box.

For more information on how Address Verifier handles PMB numbers see the
section entitled Secondary Addresses on page 6.

Syntax
SOAP
string = Response.Record().Address.PrivateMailBox

XML
<ResponseArray>

<Record>
<Address>

<PrivateMailBox>String</PrivateMailBox>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

45

City
For each record in the Response Array, City Name returns a string value
containing the full name of the city or municipality. City Abbreviation returns
the official thirteen character shorthand for the city name.

Remark
If the returned City element is longer than 13 letters, the City Abbreviation will
return the official abbreviation the post office has associated with that city or
municipality name. For example, “Fort Lauderdale,” will return the “Ft
Lauderdale” as the City Abbreviation.

If the City Name is 13 letters or shorter, City Abbreviation will contain the full
city or municipality name.

Syntax
SOAP
string = Response.Record().Address.City.Name
string = Response.Record().Address.City.Abbreviation

XML
<ResponseArray>

<Record>
<Address>

<City>
<Name>String</Name>
<Abbreviation>String</Abbreviation>

</City>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

46

State
For each record in the Response Array, State Name returns a string value
containing the full name of the state or province. State Abbreviation returns a
string value containing the standard two-letter Postal abbreviation for the state
or province.

Remarks
If the state name “California,” then Abbreviation would be “CA.” For the
Province of “Quebec,” Abbreviation would return “QC.”

If the record in the Request Array did not contain a city or state/province, but
only a ZIP or Postal code, the web service uses the ZIP or Postal code to
determine the city/municipality and state/province information.

Syntax
SOAP
string = Response.Record().Address.State.Name
string = Response.Record().Address.State.Abbreviation

XML
<ResponseArray>

<Record>
<Address>

<State>
<Name>String</Name>
<Abbreviation>String</Abbreviation>

</State>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

47

Zip
For each record in the Response Array, Zip returns a string value containing
the five-digit ZIP Code or six-character postal code for the address.

Remarks
If the ZIP Code supplied with the Request Array is incorrect or not supplied,
the address checking logic will return the correct five-digit ZIP Code or six-
character Postal Code for this property as long as the correct city/municipality
and state/province were supplied with Request Array record.

Syntax
SOAP
string = Response.Record().Address.Zip

XML
<ResponseArray>

<Record>
<Address>

<Zip>String</Zip>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

48

Plus4
For each record containing a U.S. address in the Response Array, the Plus4
element returns a string value containing the four-digit portion of the ZIP + 4
for the address.

Remarks
If the address sent with the Request Array is not verified, the web service
does not return a Plus4 element for that record, even if one was supplied with
the Request Array record.

Syntax
SOAP
string = Response.Record().Address.Plus4

XML
<ResponseArray>

<Record>
<Address>

<Plus4>String</Plus4>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

49

Carrier Route
U.S. Only

For each record containing a U.S. address in the Response Array,
CarrierRoute returns a string value containing the four-character code
defining the carrier route for that record.

Remarks
The first character of this property is always alphabetic, and the last three
characters are numeric. The alphabetic letter indicates the type of delivery
associated with this address.

B PO Box

C City Delivery

G General Delivery

H Highway Contract

R Rural Route

Syntax
SOAP
string = Response.Record().Address.CarrierRoute

XML
<ResponseArray>

<Record>
<Address>

<CarrierRoute>String</CarrierRoute>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

50

Delivery Point Code
U.S. Only

For each record containing a U.S. address in the Response Array,
DeliveryPointCode returns a string value containing the tenth and eleventh
digits of the POSTNet barcode number.

Remarks
The complete twelve-digit POSTNet barcode number consists of the ZIP + 4,
minus any dash, the two-digit DeliveryPointCode and the single-digit
DeliveryPointCheckDigit, described on the next page.

Syntax
SOAP
string = Response.Record().Address.DeliveryPointCode

XML
<ResponseArray>

<Record>
<Address>

<DeliveryPointCode>String</DeliveryPointCode>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

51

Delivery Point Check Digit
U.S. Only

For each record containing a U.S. address in the Response Array,
DeliveryPointCheckDigit returns a string value containing the twelfth digit of
the POSTNet barcode number.

Remarks
For more information using DeliveryPointCheckDigit to create a POSTNet
barcode, see Delivery Point Code on page 50.

Syntax
SOAP
string = Response.Record().Address.DeliveryPointCheckDigit

XML
<ResponseArray>

<Record>
<Address>

<DeliveryPointCheckDigit>
String

</DeliveryPointCheckDigit>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

52

Address Type
U.S. and Canada

For each record containing a U.S. or Canadian address in the Response
Array, Address Type Code returns a string value containing the one-character
code for the specific type of address returned by the current record. Address
Type Description returns a string value containing a description of the address
type that corresponds to the Address Type Code.

Remarks
The GetAddressTypeCode returns a one-character string value for the Type
and Address that was coded. For U.S. addresses, Address Verifier would
return one of the following codes:

Code Descriptions

A Alias

F Firm or Company address

G General Delivery address

H Highrise or Business Complex

P PO Box address

R Rural Route address

S Street or Residential address

For Canadian addresses, Address Verifier would return one of the following
codes.

Code Descriptions

1 Street

2 Street Served By Route and GD

3 Lock Box

4 Route Service

5 General Delivery

B LVR Street

C Government Street

D LVR Lock Box

E Government Lock Box

L LVR General Delivery

K Building

Syntax
SOAP
string = Response.Record().Address.Type.Address.Code
string = Response.Record().Address.Type.Address.Description

XML
<ResponseArray>

<Record>
<Address>

<Type>
<Address>

<Code>String</Code>
<Description>String</Description>

</Address>
</Type>

</Address>
</Record>

</ResponseArray>

 Chapter 4
Address Verifier Response

53

 Chapter 4
Address Verifier Response

54

Zip Type
U.S. Only

For each record containing a U.S. address in the Response Array, Zip Type
Code returns a string value containing the one-character code for the specific
type of ZIP Code for the address returned by the current record. Zip Type
Description returns a string value containing a description of the ZIP Code
type that corresponds to the Zip Type Code.

Remarks
The Zip Type Code and Zip Type Description elements return one of the
following sets of values:

Code Descriptions

P PO Box ZIP Code

U Unique ZIP Code

M Military ZIP Code

Empty Standard ZIP Code

The empty string for a Standard ZIP Code is a zero-length string, not a space.

Syntax
SOAP
string = Response.Record().Address.Type.Zip.Code
string = Response.Record().Address.Type.Zip.Description

XML
<ResponseArray>

<Record>
<Address>

<Type>
<Zip>

<Code>String</Code>
<Description>String</Description>

</Zip>
</Type>

</Address>
</Record>

</ResponseArray>

 Chapter 4
Address Verifier Response

55

Country
For each record in the Response Array, the web service returns two string
values designating the country in which the address is located. Country Name
returns the full name of the country while Abbreviation returns a two-character
abbreviation.

Remarks
At present, the web service only processes U.S. and Canadian addresses, so
the possible values for these two elements:

Code Name

US United States of America

CA Canada

Syntax
SOAP
string = Response.Record().Address.Country.Abbreviation
string = Response.Record().Address.Country.Name

XML
<ResponseArray>

<Record>
<Address>

<Country>
<Abbreviation>String</Abbreviation>
<Name>String</Name>

</Country>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

56

Address Key
For each record in the Response Array, returns a string value containing a
unique key for the current address.

Remarks
The Address Key is used by other Melissa Data WebSmart Services, such as
GeoCoder and Delivery Indicator. The contents of this element is submitted
with the Request Array of those web services.

Syntax
SOAP
string = Response.Record().Address.AddressKey

XML
<ResponseArray>

<Record>
<Address>

<AddressKey>String</AddressKey>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

57

Parsed Street Name
For each record in the Response Array, the web service returns a string value
containing only the name portion of the street address.

Remarks
If the street address is “123 North Main Street,” this element would return
“Main.”

If OptAddressParsed was not set to “True” by the Request Array, this element
will not be populated.

Syntax
SOAP
string = Response.Record().Address.Parsed.StreetName

XML
<ResponseArray>

<Record>
<Address>

<Parsed>
<StreetName>String</StreetName>

</Parsed>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

58

Parsed Address Range
For each record in the Response Array, the web service returns a string value
containing only the street number portion of the street address.

Remarks
If the street address is “123 North Main Street,” this element would return
“123.”

If OptAddressParsed was not set to “True” by the Request Array, this element
will not be populated.

Syntax
SOAP
string = Response.Record().Address.Parsed.AddressRange

XML
<ResponseArray>

<Record>
<Address>

<Parsed>
<AddressRange>String</AddressRange>

</Parsed>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

59

Parsed Address Suffix
For each record in the Response Array, the web service returns a string value
containing only the suffix portion of the street address.

Remarks
If the street address is “123 North Main Street,” this element would return “St.”

If OptAddressParsed was not set to “True” by the Request Array, this element
will not be populated.

Syntax
SOAP
string = Response.Record().Address.Parsed.Suffix

XML
<ResponseArray>

<Record>
<Address>

<Parsed>
<Suffix>String</Suffix>

</Parsed>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

60

Parsed Address Direction
For each record in the Response Array, the web service returns a pair of
string values containing only the directional portions of the street address, if
any.

Remarks
If the street address is “123 North Main Street,” the Pre Direction element
would return “N.” If the address is “456 Maple Street West,” the Post Direction
element would return “W.”

If OptAddressParsed was not set to “True” by the Request Array, this element
will not be populated.

Syntax
SOAP
string = Response.Record().Address.Parsed.Direction.Post
string = Response.Record().Address.Parsed.Direction.Pre

XML
<ResponseArray>

<Record>
<Address>

<Parsed>
<Direction>

<Post>String</Post>
<Pre>String</Pre>

</Direction>
</Parsed>

</Address>
</Record>

</ResponseArray>

 Chapter 4
Address Verifier Response

61

Parsed Address Suite
For each record in the Response Array, the web service returns a pair of
string values containing the parsed suite information from the street address.

Remarks
If the street address is “123 North Main Street #B,” the Suite Name element
would return “Apt” and the Suite Number element would return “B.”

If OptAddressParsed was not set to “True” by the Request Array, this element
will not be populated.

Syntax
SOAP
string = Response.Record().Address.Parsed.Suite.Name
string = Response.Record().Address.Parsed.Suite.Range

XML
<ResponseArray>

<Record>
<Address>

<Parsed>
<Suite>

<Name>String</Name>
<Range>String</Range>

</Suite>
</Parsed>

</Address>
</Record>

</ResponseArray>

 Chapter 4
Address Verifier Response

62

Parsed Address PrivateMailbox
For each record in the Response Array, the web service returns a pair of
string values containing the parsed private mailbox (PMB) information from a
street address that belongs to a Commercial Mail Receiving Agency (CMRA).

Remarks
If OptAddressParsed was not set to “True” by the Request Array, this element
will not be populated.

For more information on private mailboxes and how Address Verifier handles
them, see Secondary Addresses on page 6.

Syntax
SOAP
string = Response.Record().Address.Parsed.PrivateMailBox.Name
string = Response.Record().Address.Parsed.PrivateMailBox.Range

XML
<ResponseArray>

<Record>
<Address>

<Parsed>
<PrivateMailBox>

<Name>String</Name>
<Range>String</Range>

</PrivateMailBox>
</Parsed>

</Address>
</Record>

</ResponseArray>

 Chapter 4
Address Verifier Response

63

Parsed Route Service
For each Canadian address record in the Response Array, the web service
returns the parsed route service information.

Remarks
Route service is a term used to refer to what the USPS would call a Rural
Route address.

Syntax
SOAP
string = Response.Record().Address.Parsed.RouteService

XML
<ResponseArray>

<Record>
<Address>

<Parsed>
<RouteService>String</RouteService>

</Parsed>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

64

Parsed Lockbox
For each Canadian address record in the Response Array, the web service
returns the parsed lock box information.

Remarks
A lock box is the Canadian equivalent of a Post Office Box in the U.S. (The
two terms are often used interchangeably in Canada).

Syntax
SOAP
string = Response.Record().Address.Parsed.LockBox

XML
<ResponseArray>

<Record>
<Address>

<Parsed>
<LockBox>String</LockBox>

</Parsed>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

65

Parsed Delivery Installation
For each Canadian address record in the Response Array, the web service
returns the parsed delivery installation information.

Remarks
The delivery installation is the post office facility responsible for delivering to
the current address. It is often used for rural addresses or when multiple post
offices service the same municipality.

Syntax
SOAP
string = Response.Record().Address.Parsed.DeliveryInstallation

XML
<ResponseArray>

<Record>
<Address>

<Parsed>
<DeliveryInstallation>

String
</DeliveryInstallation>

</Parsed>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

66

Parsed Garbage
For each record in the Response Array, the web service returns a string value
containing any portion of the street address that cannot be identified as a
specific part.

Remarks
If the street address is “c/o 123 North Main Street,” this element would return
“c/o.”

If OptAddressParsed was not set to “True” by the Request Array, this element
will not be populated.

Syntax
SOAP
string = Response.Record().Address.Parsed.Garbage

XML
<ResponseArray>

<Record>
<Address>

<Parsed>
<Garbage>String</Garbage>

</Parsed>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

67

Response Object XML Format
The following shows the structure of the XML document returned by the
WebSmart Address Verifier Service.

<?xml version="1.0" encoding="UTF-8"?>
<ResponseArray>

<version>String</version>
<TransmissionReference>String
</TransmissionReference>
<Results>String</Results>
<TotalRecords>String</TotalRecords>

<Record>
<RecordID>String</RecordID>
<Results>String</Results>
<Address>

<Company>String</Company>
<Urbanization>

<Name>String</Name>
</Urbanization>
<Address1>String</Address1>
<Address2>String</Address2>
<Suite>String</Suite>
<PrivateMailBox>String</PrivateMailBox>
<City>

<Name>String</Name>
<Abbreviation>String</Abbreviation>

</City>
<State>

<Name>String</Name>
<Abbreviation>String</Abbreviation>

</State>
<Zip>String</Zip>
<Plus4>String</Plus4>
<CarrierRoute>String</CarrierRoute>
<DeliveryPointCode>String</DeliveryPointCode>
<DeliveryPointCheckDigit>String

</DeliveryPointCheckDigit>
<Type>

<Address>
<Code>String</Code>

 Chapter 4
Address Verifier Response

68

<Description>String</Description>
</Address>
<Zip>

<Code>String</Code>
<Description>String</Description>

</Zip>
</Type>
<Country>

<Abbreviation>String</Abbreviation>
<Name>String</Name>

</Country>
<AddressKey>String</AddressKey>
<Parsed>

<StreetName>String</StreetName>
<AddressRange>String</AddressRange>
<Suffix>String</Suffix>
<Direction>

<Post>String</Post>
<Pre>String</Pre>

</Direction>
<Suite>

<Range>String</Range>
<Name>String</Name>

</Suite>
<PrivateMailbox>

<Name>String</Name>
<Range>String</Range>

</PrivateMailbox>
<RouteService>String</RouteService>
<LockBox>String</LockBox>
<DeliveryInstallation>

String
</DeliveryInstallation>
<Garbage>String</Garbage>

</Parsed>
</Address>

</Record>
</ResponseArray>

 Chapter 4
Address Verifier Response

69

Using Result Codes: Coding for
the present and the future

Over a year ago, Melissa Data introduced a new concept know as Result
codes. These are four-character codes (two letters followed by two numbers),
delimited by commas, which indicate status and errors generated by the most
recent request to an object or service. An Address Verifier result code for a
coded address record might look something like this: “AC03, AC11, AS01,
AS15.” Instead of looking at multiple properties and methods to determine the
status or error of a record, you can simply look at the output of the Results
property. Currently there are close to 50 possible result codes for Address
Object alone. This section will dive into the best way to use these codes in
your application now and in the future, focusing specifically on Address
Verifier.

Best Practice #1: Read all the Result codes, but you
won’t use them all.

The first step to understanding how to use Result codes is to know each code,
individually. Having said that, understanding all the codes does not mean you
will use all of them. You will likely only ever use a few. We have many different
codes that indicate many different statuses or errors. A code may be
important to one person but not another. For example, the AS20 codes means
the address is deliverable only by the USPS, like a PO Box or a military
address. This would not be important for you if you already delivery using
USPS or don't deliver at all, but it would be important if you delivery using a
third party carrier, like UPS.

Best Practice #2: Determine what a “good” record
means.

The ultimate goal of using Result codes is to determine what to do with the
record you have.

To do so, first determine what a “good” record is. In most cases, it will simply
involve the AS01 or AS02 codes. For example, if you want your “good” record
to be all addresses verified as fully deliverable, you would use:

if(Results.Contains("AS01")) { //good record}

If you want all fully deliverable addresses but also addresses that have
missing/invalid suites, you would use:

 Chapter 4
Address Verifier Response

70

if(Results.Contains("AS01") or Result.Contains("AS02")
{ //good record}

In more complex cases when you want to take more factors in account, add
more code to your “good” record filter. For example, if you want all records
that have a fully deliverable address or records that have an invalid suite but
also a 10-digit verified phone number, you would write:

If(Results.Contains("AS01") or (Result.Contains("AS02")
and Result.Contains("PS01"))

This filter introduces the Result codes for Phone Verifier, which behaves the
same way as Address Verifier Result codes logically. Having said this, you
can have more than one “good” filter. It is possible to cascade them in a
“good,” “okay,” and then “bad”, in the same fashion as a switch statement.
Once you have your “good” record filter, all the other records will naturally fall
into the “bad” category.

Best Practice #3: Result codes will change. Code for it.
Since the inception of Result codes, the number of possible codes has
doubled. Melissa Data is always innovating and adding new information and
enrichments. You will not be able to know exactly what new codes may be
introduced in the future, but we can still account for them. So, as we see in
Best Practice #2, always use the String.Contains() or an equivalent
function when detecting for codes, so re-ordering and future additions will not
affect your current code. Also, have all records that do not pass your filter
become a “bad” record. This allows for future codes to be added without
records being lost if you don't specifically filter for them.

Like many things, the best way to learn how to use Result codes is to actually
try and use them. See what Result codes are produced by different types of
addresses, and how your code handles them. For an up-to-date online
reference of all Result codes available and examples to produce each code,
visit here: http://www.melissadata.com/tech/ResultCodes.asp.

	Table of Contents
	Welcome to WebSmart Services
	An Introduction to Address Verifier
	Address Handling
	Adding Address Verifier to a Project
	Submitting an XML Request
	Building a REST Request

	Address Verifier Request
	Request Elements
	Record Elements

	Address Verifier Response
	Record Elements
	Response Object XML Format
	Using Result Codes: Coding for the present and the future

